

Progress on the SRF developments for the high intensity projects in Europe

G. Devanz CEA-Saclay Irfu

TTC meeting JLAB Nov. 5 2012

SPIRAL 2

SC LINAC

- RIB installed in GANIL Caen
- Deuterons (5 mA) and ions up to q/A=1/6
- Temperature: 4.5 K
- Frequency: 88 MHz
- E_{acc} max : 6.5 MV/m

12 Low beta CMs

12 β = 0.07 cavities

IRFU Saclay

7 high beta CMs

14 β = 0.12 cavities

IPN Orsay

28 power couplers

LPSC Grenoble

SPIRAL 2 QWRs

CM status

- All components of the CMs are delivered
- Main activity of 2011-2012 period: looking for the source of strong FE and heating of cavities during cryomodule tests

Discharge marks on coupler tip after high beta CM test (2010) Cavity Eacc limitation in CM = $\frac{1}{2}$ max. Eacc in VT

- Improved the power coupler cleaning procedure, now including 50 μm EP on antenna, more thourough contamination control for the clean room assembly of vacuum components, pulsed conditioning of couplers
- Status
 - 2 low-beta CMs tested to specifications, one with a pre-2011 setup, one with 2012 procedures for FPC and vacuum components
 - No high beta CM tested with new procedures due to test area upgrade in 2012.
 Fully rebuild CMs (including plunger tuner with reduced hysteresis) await test

IFMIF EVEDA

CW 125 mA deuteron beam

EVEDA aims at validating te technology for IFMIF with a single CM (8x beta= 0.095 HWRs)

IFMIF EVEDA

IFMIF HWRs prototypes

Low performance of the two prototypes until summer 2012:

- Leaks at 4.2 K
- Early quench ~2.5MV/m (best for P01)
- Low Qo ~10e8 at low field

analysis of failure:

- NbTi plunger flange including weld to Nb located in too high a H field region
- Test of one prototype with in verted plunger to lower H in the flange area and prove it experimentally
- to sharp edges at the base of HPR ports

IFMIF HWRs tuners

Plunger tuner development has been frozen, project decided to fold back to deformation tuner and extra space has been alloted around each cavity to

- -> new mechanical design of the cavity and He vessel
- -> deformation tuner with lever arm and dis-engagement system

IFMIF – Power couplers

Couplers are designed for 200 kW CW power for IFMIF (CEA+ CPI)

Will be tested up to 80 kW CW for EVEDA phase

2 pre-series couplers delivered at Saclay, will be conditionned in spring at CIEMAT

HIE Isolde

first stage of REX Isolde upgrade with two high beta 5-QWR CMs (from 2.8 MeV/u to 5.5 MeV/u for q/A=1/4.5. Operation for physics in 2015.

NbCu technology: Cu substrate quality extremely important for Nb thin layer properties → Raw Cu material processing : multidirectionnal hot forging+cold forging

Performance improvement in 2012: Bulk Cu 3D machining +EBW instead of rolling+ deep drawing+EBW

More details S. Calatroni talk on wednesday

European Spallation Source

Main design choices:

- SRF linac includes a spoke cavity section
- Spokes operate at 2 K
- Short 4-cavity CMs are used for both elliptical cavity sections
- HOM couplers are discarded

ESS 352 MHz spoke section (IPN Orsay)

2 cavities/CM supported by rods Ti He vessel Lever arm deformation tuners (incl. Piezo) Estimated static heat load at 2K: 7.5 W

	Market a court of the court of	The T
E field	H field	CST CST CST CST CST CST CST CST CST CST
		2944 2327 1427 944
# C-field (proh)	10	.1.

Status: RF and mechanical design done. A call for tender for 2+1 cavity by two distinct manufacturers has been issued Full test of prototype forseen in 2015

Nr of spokes	2
Optimal beta	0.50
Epk/Ea	4.96
Bpk/Ea [mT/MV/m]	7.03
G [Ohm]	133
r/Q [Ohm]	428
Qext	2.6e5
FPC port diameter [mm]	100

300 kW peak power RF window optimization

More details S. Bousson talk on tuesday. Devanz TTC meeting Jlab Nov. 5th 2012

ESS high beta 704 MHz elliptical section

G. Devanz TTC meeting Jlab Nov. 5th 2012

CERN SPL

Helium tank.

Bulk niobium cavities

HP SPL:

- 4 MW beam power
- 20 to 40 mA beam intensity
- 1 MW Max peak power in FPC
- Two families of 5-cell elliptical cavities

geom. beta	0.65	1
f (MHz)	704.4	704.4
Design gradient (MV/m)	19	25
Epk/Eacc	2.63	2
Bpk/Eacc (mT/MV/m)	5.12	4.2
K (%)	1.45	1.9
r/Q (Ohm)	275	566
G (Ohm)	197	270

Cern stainless steel He vessel

HOM coupler

 β =1 5-cell cavity

IPNO β =0.65 Ti He vessel

SPL short cryomodule

CERN and IPN Orsay design

- Top loading cryomodule
- Cavities supported by power couplers
- Stainless steel He vessels

Status: detailed design on-going

More details O. Capatina talk on wednesday

CERN SPL couplers: RF power tests at CEA

High average power air cooled couplers Limitation of average power to 20 Hz (instead of 50 Hz) due to uncoated TD

Cylindrical window:

TW: 1000 kW 2 ms 20 Hz

SW: 550 kW 500 μs 8 Hz

(Arcing limitation : under investigation)

Coaxial disk window:

TW: 1000 kW 2 ms 20 Hz

SW: 1000 kW 1.5 ms 4 Hz

(Tests pending: test bench availability)

G. Devanz TTC meeting Jlab Nov. 5th 2012

SPL cavity prototyping

four 5-cell cavities will be manufactured in industry+ one at CERN

Beta = 1 CERN copper model (EB welded)

G. Devanz TTC meeting Jlab Nov. 5th 2012

Some new infrastructures for 700 MHz SRF activities

Operating Vertical EP station at Saclay: (Eucard beta=1 cavity, ESS HB ellipticals, tested on 1.3 GHz single cells, 9-cells)

New clean room at Saclay designed for ESS prototype cryomodule, spiral 2 series CM assembly, build in 2013

Vertical EP at CERN: First tests on a b=0.65 single cell cavity (S. Calatroni)

G. Devanz TTC meeting Jlab Nov. 5th 2012

Eurisol triple spoke (IPN Orsay)

- Eacc limited to 3.5 MV/m after first chemical processing
- Cavity is now integrated in its He vessel
- It will be equipped with a plunger tuner
- A test cryostat is being equipped for horizontal testing

More details in S. Bousson talk on tuesday

Myrrha - Generic scheme of the European ADS accelerator

Redundant injector + Modular SC main linac

Myrrha/MAX R&D

Power couplers 704 MHz 80 kW CW conditioning is started
 P>30kW CW obtained last week, on going

Ellipticals full test foreseen after the FPC conditioning (INFN beta=0.5 5-cell cavity w/ blade tuner)

 Single spoke design on-going. One prototype will be build and tested in 2013

Spoke CM conceptual design on going

325 MHz CH-Prototype

0.1545
325.224
7
505
348
5
5.1
13
64
1248
80000

Frankfurt CH prototypes

217 MHz 15-gap CH (beta= 0.059)

to be tested with beam at GSI

Status: cavity in fabrication

Cryomodule ordered

More details in H.Podlech talk on tuesday

Thanks!

- J.-L. Biarrotte IPNO
- P. Bosland CEA
- S. Bousson IPNO
- S. Calatroni CERN
- O. Capatina CERN
- E. Montesinos CERN
- G. Olry IPNO
- H. Podlech U. Frankfurt
- E. Rampnoux IPNO