Analysis of Photoproduction Reactions

Vincent MATHIEU

Jefferson Lab

Joint Physics Analysis Center

CLAS Collaboration Meeting Jefferson Lab - October 2017

Motivation: The Factorization Hypothesis

Photoproduction of mesons at $E_{\gamma} = 6 - 12 \text{ GeV}$

Study photoproduction of mesons Search for exotic resonances

Special interest in mesons:

Does the target decouple at JLab energies ?

Production of 'Exotica'

start by photoproduction of pions

Factorization

Angular momentum conservation for the reaction implies:

$$A_{\lambda_p \lambda_{p'}}^{\lambda_\gamma \lambda_M} = \gamma(t) (\sqrt{-t})^{|(\lambda_\gamma - \lambda_M) - (\lambda_p - \lambda_{p'})|} \times \frac{1 \pm e^{-i\pi\alpha(t)}}{2\sin\pi\alpha(t)} s^{\alpha(t)}$$

Factorization

Factorization implies angular mom, conservation at each vertex:

Production: A Simple Example

simple form for production via Regge exchange

 $A \propto \beta(t) s^{\alpha(t)}$

s = c.-of-mass energy squared t = mom. transfered squared

Production: A Simple Example

simple form for production via Regge exchange

 $A \propto \beta(t) s^{\alpha(t)}$

s = c.-of-mass energy squared t = mom. transfered squared

 $\frac{d\sigma}{dt} \propto \frac{1}{p^2} \beta^2(t) s^{2\alpha(t)}$

 $\frac{d\sigma}{dt} \propto \frac{1}{p^2} \beta^2(t) s^{2\alpha(t)}$

$$\alpha_{\text{eff}} = \frac{1}{2} \log \left(\frac{p^2 \frac{d\sigma}{dt}}{p_0^2 \frac{d\sigma_0}{dt}} \right) \log^{-1} \left(\frac{s}{s_0} \right)$$

$$\alpha_{\text{eff}} = \frac{1}{2} \log \left(\frac{p^2 \frac{d\sigma}{dt}}{p_0^2 \frac{d\sigma_0}{dt}} \right) \log^{-1} \left(\frac{s}{s_0} \right)$$

$$\frac{d\sigma}{dt} \propto \frac{1}{p^2} \beta^2(t) s^{2\alpha(t)}$$

$$\alpha_{\text{eff}} = \frac{1}{2} \log \left(\frac{p^2 \frac{d\sigma}{dt}}{p_0^2 \frac{d\sigma_0}{dt}} \right) \log^{-1} \left(\frac{s}{s_0} \right)$$

Correct energy dependence BUT multiple contributions

 $\gamma p \to \pi^0 p$

Model based on factorization with parameters fitted

$$\Sigma = \frac{\sigma_{\perp} - \sigma_{\parallel}}{\sigma_{\perp} + \sigma_{\parallel}} = \frac{|\rho + \omega|^2 - |b + h|^2}{|\rho + \omega|^2 + |b + h|^2}$$

axial-vector exchanges strength decreases with energy More precise data@JLAB could confirm

VM, Szczepaniak and Fox Phys. Rev. D. 92 074013

$$\Sigma = \frac{|\rho + \omega|^2 - |b + h|^2}{|\rho + \omega|^2 + |b + h|^2}$$

$$\begin{split} \Sigma &= \frac{|\rho + \omega|^2 - |b + h|^2}{|\rho + \omega|^2 + |b + h|^2} \\ \text{grow with } E_{\gamma} & \text{constant with } E_{\gamma} \\ \rho, \omega &\sim s^{0.5} & b, h \sim s^{0.0} \end{split}$$

 $\Sigma \to 1$ as E_{γ} increases

 $\rho, \omega \sim s^{0.5} \qquad b, h \sim s^{0.0}$

 $\Sigma \to 1$ as E_{γ} increases

$$\Sigma(\eta) = \frac{|\rho + \omega|^2 - |b + h|^2}{|\rho + \omega|^2 - |b + h|^2}$$
$$= \Sigma(\eta')$$

Beam asymmetry Difference probes strange exchanges contribution

blue and green models represent the estimation of systematic errors

GlueX Preliminary results expected at the APS meeting (October 25-27th 2017)

VM et al. (JPAC) arXiv:1704.07684

$$\Sigma(\eta) = \frac{|\rho + \omega + \phi|^2 - |b + h + h'|^2}{|\rho + \omega + \phi|^2 - |b + h + h'|^2}$$
$$\neq \Sigma(\eta')$$

Beam asymmetry Difference probes strange exchanges contribution

blue and green models represent the estimation of systematic errors

GlueX Preliminary results expected at the APS meeting (October 25-27th 2017)

VM et al. (JPAC) arXiv:1704.07684

[Boyarski et al. 1968]

Factorization of Regge residues: $(\lambda_{\gamma}, \lambda_{\pi}) = (1, 0)$ and

$$(\lambda_p, \lambda_n) = \left(-\frac{1}{2}, +\frac{1}{2}\right)$$
$$(\lambda_p, \lambda_n) = \left(+\frac{1}{2}, -\frac{1}{2}\right)$$

$$A^{10}_{-\frac{1}{2}\frac{1}{2}} \propto \frac{-t}{m_{\pi}^2 - t}$$
$$A^{10}_{\frac{1}{2}-\frac{1}{2}} \propto \frac{-t}{m_{\pi}^2 - t}$$

 $\gamma p \to \pi^+ n$

[Boyarski et al. 1968]

Factorization of Regge residues: $(\lambda_{\gamma}, \lambda_{\pi}) = (1, 0)$ and

$$(\lambda_p, \lambda_n) = \left(-\frac{1}{2}, +\frac{1}{2}\right)$$
$$(\lambda_p, \lambda_n) = \left(+\frac{1}{2}, -\frac{1}{2}\right)$$

$$A^{10}_{-\frac{1}{2}\frac{1}{2}} \propto \frac{-t}{m_{\pi}^2 - t}$$
$$A^{10}_{\frac{1}{2}-\frac{1}{2}} \propto \frac{-t}{m_{\pi}^2 - t}$$

 $\gamma p \to \pi^+ n$

[Boyarski et al. 1968]

Factorization of Regge residues: $(\lambda_{\gamma}, \lambda_{\pi}) = (1, 0)$ and

$$(\lambda_p, \lambda_n) = \left(-\frac{1}{2}, +\frac{1}{2}\right)$$
$$(\lambda_p, \lambda_n) = \left(+\frac{1}{2}, -\frac{1}{2}\right)$$

William's Poor man absorption:

$$A_{-\frac{1}{2}\frac{1}{2}}^{10} \propto \frac{-t}{m_{\pi}^2 - t}$$
$$A_{\frac{1}{2}-\frac{1}{2}}^{10} \propto \frac{-t}{m_{\pi}^2 - t}$$
$$\frac{2}{2}$$

$$-\frac{m_{\pi}^2}{m_{\pi}^2 - t}$$

$$|(\lambda_{\gamma} - \lambda_{p}) - (\lambda_{\pi} - \lambda_{p'})| = 0$$

 $\gamma p \to \pi^+ n$

[Boyarski et al. 1968]

Courtesy of J. Nys

Courtesy of J. Nys

 $\sigma_{\perp}: \rho \pm a_2$

Indiana University

- Adam Szczepaniak Professor
- Geoffrey Fox Professor
- Emilie Passemar Professor
- Tim Londergan Professor
- Ina Lorenz Postdoctoral researcher
- Andrew Jackura PhD student

Jefferson Lab

- Michael R. Pennington Professor
- Viktor Mokeev Professor
- Vincent Mathieu Postdoctoral researcher
- Alessandro Pilloni Postdoctoral researcher

Universidad Nacional Autonoma de Mexico

Cesar Fernandez-Ramirez Professor

Johannes Gutenberg University, Mainz

- Igor Danilkin Postdoctoral researcher
- Astrid Hiller Blin Postdoctoral researcher

Murcia University

Miguel Albaladejo Postdoctoral researcher

George Washington University

- Ron Workman Professor
- Michael Doring Professor

Bonn University

• Misha Mikhasenko PhD student

Ghent University

Jannes Nys PhD student

http://www.indiana.edu/~jpac/index.html

DIANA UNIVERSITT

Resources

- Publication: [Nys16]
- C/C++ observables: C-code main, Input file, C-code source, C-code header, Eta-MAID 2001 multipoles
- C/C++ minimal script to calculate the amplitudes: C-code zip
- Data: Dewire , Braunschweig
- Contact person: Jannes Nys
- Last update: November 2016

Run the code

E_{γ} in GeV 9	٢		
 t ⊂ cos 			
$t \text{ in GeV}^2$ (min max step)	-1	0	0.01
$\cos \theta$ (min max step)	0.85	1	0.01
Start reset			

Observable: photon beam asymmetry Download the plot with Ox=t, the plot with Ox=cos.

Observable: differential cross section

Download the the plot with Ox=t, the plot with Ox=cos.

Backup Slides

Eta-Pi @COMPASS

Eta-Pi @COMPASS

COMPASS Phys. Lett. B740 (2015)

COMPASS PLB740 (2015)

Eta-Pi@COMPASS

A. Jackura et al (JPAC) and COMPASS, arXiv:1707.02848

COMPASS PLB740 (2015)

Eta-Pi@COMPASS

A. Jackura et al (JPAC) and COMPASS, arXiv:1707.02848

COMPASS PLB740 (2015)

Eta-Pi@COMPASS

A. Jackura et al (JPAC) and COMPASS, arXiv:1707.02848

Eta-Pi@COMPASS

Eta-Pi@COMPASS

140

Cauchy contour

$$\oint_C A(\nu, t) d\nu = 0$$

Cauchy contour

$$\oint_C A(\nu, t) d\nu = 0$$

$$2i \int_{\nu_0}^{\Lambda} \operatorname{Im} A(\nu, t) d\nu = -\oint_{C_{\Lambda}} A(\nu, t) d\nu$$

Cauchy contour

$$\oint_C A(\nu, t) d\nu = 0$$

$$2i \int_{\nu_0}^{\Lambda} \operatorname{Im} A(\nu, t) d\nu = -\oint_{C_{\Lambda}} A(\nu, t) d\nu$$

Assume Regge form at $\nu = \Lambda$: $A(\nu, t) = \beta(t) \frac{\pm 1 - e^{-i\pi\alpha(t)}}{\sin\pi\alpha(t)} \nu^{\alpha(t)}$

21

Cauchy contour

$$\oint_C A(\nu, t) d\nu = 0$$

$$2i \int_{\nu_0}^{\Lambda} \operatorname{Im} A(\nu, t) d\nu = -\oint_{C_{\Lambda}} A(\nu, t) d\nu$$

Assume Regge form at $\nu = \Lambda$: $A(\nu, t) = \beta(t) \frac{\pm 1 - e^{-i\pi\alpha(t)}}{\sin\pi\alpha(t)} \nu^{\alpha(t)}$

21

$$\int_{\nu_0}^{\Lambda} \operatorname{Im} A(\nu, t) d\nu = \beta(t) \frac{\Lambda^{\alpha(t)+1}}{\alpha(t)+1}$$

$= \int_{-1}^{n_0} \int_{0}^{n_0} \int_{0}^{n_0}$

t fixed

Cauchy contour

$$\oint_C A(\nu, t) \nu^k d\nu = 0$$

$$2i \int_{\nu_0}^{\Lambda} \operatorname{Im} A(\nu, t) d\nu = -\oint_{C_{\Lambda}} A(\nu, t) d\nu$$

Assume Regge form at $\nu = \Lambda$: $A(\nu, t) = \beta(t) \frac{\pm 1 - e^{-i\pi\alpha(t)}}{\sin\pi\alpha(t)} \nu^{\alpha(t)}$

22

$$\frac{1}{\Lambda^k} \int_{\nu_0}^{\Lambda} \operatorname{Im} A(\nu, t) \nu^k d\nu = \frac{\beta(t) \Lambda^{\alpha(t)+1}}{\alpha(t) + k + 1}$$
t fixed

Low energy: SAID

Plotted data is for TLAB= 970.00 to TLAB=1030.00 4 CH[67] 1 CXS DSG TLAB= 1000.00 UN-Normalized HE[77]P0 ORI[68] 2 WI08 766276 57415/31339 P+=27207/13354 P-=22681/11978 CX= PN091f PI-N data VPI&SU 01/09 Arndt 04/26/16 $\theta_{c.m.}$ (deg) 0.0 180.0 8/21/17 Plotted data is for TLAB= 190.00 to TLAB= 210.00 CXS_DSG_TLAB= 200.00 UN-Normalized 4 BO[82]P1 ¢ JE[77] 3 OBY[76] 3 OHA[71] 2 E[72] 3 WI08 766276 57415/31339 P+=27207/13354 P-=22681/11978 CX= PN091f PI-N data VPI&SU 01/09 Arndt 04/26/16 E[77]P0 $\theta_{c.m.}$ (deg) 180.0 0.0 8/21/17

High energy: Regge

$$\frac{1}{\Lambda^k} \int_{\nu_0}^{\Lambda} \operatorname{Im} A(\nu, t) \nu^k d\nu = \frac{\beta(t) \Lambda^{\alpha(t)+1}}{\alpha(t) + k + 1}$$

Low energy: SAID

Plotted data is for TLAB= 970.00 to TLAB=1030.00 ⁴ CH[67] 1 CXS_DSG_TLAB= 1000.00 UN-Normalized HE[77]P0 ORI[68] 2 WI08 766276 57415/31339 P+=27207/13354 P-=22681/11978 CX= PN091f PI-N data VPI&SU 01/09 Arndt 04/26/16 $\theta_{c.m.}$ (deg) 180.0 0.0 8/21/17 Plotted data is for TLAB= 190.00 to TLAB= 210.00 CXS DSG TLAB= 200.00 UN-Normalized A BO[82]P1 IE[77] 3 OBY[76] 3 OHA[71] 2 E[72] 3 WI08 766276 57415/31339 P+=27207/13354 P-=22681/11978 CX= PN091f PI-N data VPI&SU 01/09 Arndt 04/26/16 E[77]P0 $\theta_{c.m.}$ (deg) 0.0180.0 8/21/17

$\frac{d\sigma}{dt}$ (mb.GeV⁻²) at $P_{lab}=3$ GeV $\frac{d\sigma}{dt}$ (mb.GeV⁻²) at P_{lab}=5 GeV $\frac{d\sigma}{dt}$ (mb.GeV⁻²) at P_{lab}=6 GeV 80 π⁻p + π⁺p π⁻p + π⁺p π⁻p + π⁺p 60 60 π⁻p - π⁺p π⁻p - π⁺p π⁻p - π⁺p 40 40 3 GeV 5 GeV 6 GeV 20 20 (d) (e) (f)0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.8 0.0 0.2 0.4 1.0 0.6 1.0 0.6 0.8 1.0 -t (GeV2) -t (GeV2) -t (GeV2) $\frac{1}{\Lambda^k} \int_{\nu_0}^{\Lambda} \operatorname{Im} A(\nu, t) \nu^k d\nu = \frac{\beta(t) \Lambda^{\alpha(t)+1}}{\alpha(t) + k + 1}$

High energy: Regge

FESR provides constraint on the low energy fit (that determines resonances parameters)

60

40

20

VM et al. (JPAC) PRD92 (2015)

Let's compare both side of the sum rule

²⁴ VM et al (JPAC) PRD92 (2015) ; arXiv:1506.01764

Combined Fit of FESR and Observables

VM et al (JPAC) in preparation

1.0

1.0

1.0

Future Projects

J. Stevens et al.

$$\gamma p \to \omega p$$

 $\gamma p \to \pi \Delta$
 $\gamma p \to \eta \pi^0 p$

M. Mikhasenko et al.

$$\pi^-p
ightarrow \eta \pi^- p$$
 arXiv:1707.02848 $\pi^-p
ightarrow \pi^- \pi^+ \pi^- p$

BEST

T. Skwarnicki et al.

R. Mitchell et al.

 $\Lambda_b \to J/\psi K^- p$

 $e^+e^- o \pi^+\pi^- J/\psi~$ PLB772 (2017)

 $\gamma p \rightarrow \rho^0 p$

Use beam polarization to extract spin density matrix elements:

$$\rho_{MM'}^{0} = \frac{1}{N} \sum_{\substack{\lambda_{\gamma}\lambda_{p}\lambda_{p'}}} A_{\lambda_{\gamma}\lambda_{p}\lambda_{p'}M} A_{\lambda_{\gamma}\lambda_{p}\lambda_{p'}M'}^{*}$$

$$\rho_{MM'}^{1} = \frac{1}{N} \sum_{\substack{\lambda_{\gamma}\lambda_{p}\lambda_{p'}}}^{\lambda_{\gamma}\lambda_{p}\lambda_{p'}} A_{\lambda_{\gamma}\lambda_{p}\lambda_{p'}M} A_{-\lambda_{\gamma}\lambda_{p}\lambda_{p'}M'}^{*}$$

$$N = \sum_{\substack{\lambda}} |A_{\lambda}|^{2}$$

At leading s, one can separate natural and unnatural exchanges

natural exchange: Pomeron

$$\rho_{00}^{N} = \frac{1}{2} \left(\rho_{00}^{0} - \rho_{00}^{1} \right) \qquad \rho_{11}^{N} = \frac{1}{2} \left(\rho_{11}^{0} + \rho_{11}^{1} \right)$$
$$\rho_{10}^{N} = \frac{1}{2} \left(\rho_{10}^{0} - \rho_{10}^{1} \right) \qquad \rho_{1-1}^{N} = \frac{1}{2} \left(\rho_{1-1}^{0} + \rho_{11}^{1} \right)$$

 $\gamma p \rightarrow \rho^0 p$

Use beam polarization to extract spin density matrix elements:

$$\rho_{MM'}^{0} = \frac{1}{N} \sum_{\lambda_{\gamma}\lambda_{p}\lambda_{p'}} A_{\lambda_{\gamma}\lambda_{p}\lambda_{p'}M} A_{\lambda_{\gamma}\lambda_{p}\lambda_{p'}M'}^{*}$$
$$\rho_{MM'}^{1} = \frac{1}{N} \sum_{\lambda_{\gamma}\lambda_{p}\lambda_{p'}} A_{\lambda_{\gamma}\lambda_{p}\lambda_{p'}M} A_{-\lambda_{\gamma}\lambda_{p}\lambda_{p'}M'}^{*}$$
$$N = \sum_{\lambda} |A_{\lambda}|^{2}$$

At leading s, one can separate natural and unnatural exchanges

natural exchange: Pomeron

$$\rho_{00}^{N} = \frac{1}{2} \left(\rho_{00}^{0} - \rho_{00}^{1} \right) \qquad \rho_{11}^{N} = \frac{1}{2} \left(\rho_{11}^{0} + \rho_{11}^{1} \right)$$
$$\rho_{10}^{N} = \frac{1}{2} \left(\rho_{10}^{0} - \rho_{10}^{1} \right) \qquad \rho_{1-1}^{N} = \frac{1}{2} \left(\rho_{1-1}^{0} + \rho_{11}^{1} \right)$$

Factorization:

test t-dependence of top vertex

non-flip

single-flip

double-flip $\propto eta_2 \left(\sqrt{-t}
ight)$

$$\propto \beta_0 \left(\sqrt{-t}\right)^0$$
$$\propto \beta_1 \left(\sqrt{-t}\right)^1$$

 $\gamma p \to \rho^0 p$

Use beam polarization to extract spin density matrix elements:

$$\rho_{MM'}^{0} = \frac{1}{N} \sum_{\substack{\lambda_{\gamma}\lambda_{p}\lambda_{p'}}} A_{\lambda_{\gamma}\lambda_{p}\lambda_{p'}M} A_{\lambda_{\gamma}\lambda_{p}\lambda_{p'}M'}^{*}$$
$$\rho_{MM'}^{1} = \frac{1}{N} \sum_{\substack{\lambda_{\gamma}\lambda_{p}\lambda_{p'}}}^{\lambda_{\gamma}\lambda_{p}\lambda_{p'}} A_{\lambda_{\gamma}\lambda_{p}\lambda_{p'}M} A_{-\lambda_{\gamma}\lambda_{p}\lambda_{p'}M'}^{*}$$
$$N = \sum_{\substack{\lambda}} |A_{\lambda}|^{2}$$

At leading s, one can separate natural and unnatural exchanges

natural exchange: Pomeron

$$\rho_{00}^{N} = \frac{1}{2} \left(\rho_{00}^{0} - \rho_{00}^{1} \right) \qquad \rho_{11}^{N} = \frac{1}{2} \left(\rho_{11}^{0} + \rho_{11}^{1} \right)$$
$$\rho_{10}^{N} = \frac{1}{2} \left(\rho_{10}^{0} - \rho_{10}^{1} \right) \qquad \rho_{1-1}^{N} = \frac{1}{2} \left(\rho_{1-1}^{0} + \rho_{11}^{1} \right)$$

Expectation: $\beta_0 > \beta_1 > \beta_2$

Factorization:

test t-dependence of top vertex

non-flip

single-flip

$$\propto \beta_0 \left(\sqrt{-t}\right)^0$$
$$\propto \beta_1 \left(\sqrt{-t}\right)^1$$

 \cap

double-flip $\propto eta_2 \left(\sqrt{-t}
ight)$

$\gamma p ightarrow ho^0 p$: SDME for Natural Exchange

 $\beta_0: \beta_1: \beta_2 = 1.00: 0.14: -0.09$

Fit:

$$\gamma p \to \pi^0 p$$

Blue line: Predictions from VM et al Phys. Rev. D92 074013

Red points: Data from CLAS (preliminary) Courtesy of M. Kunkel

(masses, widths and couplings)

Review of Particle Physics

(masses, widths and couplings)

Review of Particle Physics

(masses, widths and couplings)

Indiana University

- Adam Szczepaniak Professor
- Geoffrey Fox Professor
- Emilie Passemar Professor
- Tim Londergan Professor
- Ina Lorenz Postdoctoral researcher
- Andrew Jackura PhD student

Jefferson Lab

- Michael R. Pennington Professor
- Viktor Mokeev Professor
- Vincent Mathieu Postdoctoral researcher
- Alessandro Pilloni Postdoctoral researcher

Universidad Nacional Autonoma de Mexico

Cesar Fernandez-Ramirez Professor

Johannes Gutenberg University, Mainz

- Igor Danilkin Postdoctoral researcher
- Astrid Hiller Blin Postdoctoral researcher

Murcia University

Miguel Albaladejo Postdoctoral researcher

George Washington University

- Ron Workman Professor
- Michael Doring Professor

Bonn University

• Misha Mikhasenko PhD student

Ghent University

Jannes Nys PhD student

Collaborations

 $\gamma p \to \pi \pi p$ $\gamma p \to K \bar{K} p$

PRD80, PRL102 (2009)

under CLAS review

HASPECT (HAdron SPEctroscopy CenTer) M. Battaglieri et al.

J. Stevens et al.

$$\gamma p
ightarrow \pi^0 p, \eta p$$
 prc95 (2017
 $\gamma p
ightarrow \omega p$
 $\gamma p
ightarrow \pi \Delta$

M. Mikhasenko et al.

$$\pi^- p
ightarrow \eta \pi^- p$$
 arXiv:1707.02848 $\pi^- p
ightarrow \pi^- \pi^+ \pi^- p$

T. Skwarnicki et al.

$$\Lambda_b \to J/\psi K^- p$$

Wednesday AM Spectroscopy of Mesons

Tensor resonances in $\,\eta\pi$ using COMPASS data

Tuesday PM Analysis Tools

A resonance-like phenomenon $a_1(1420)$

Monday PM Analysis Tools

Bayesian Analysis of Photoproduction Reactions

Tuesday PM Poster session

Peripheral transverse densities of the baryon octet from ChPT and dispersion analysis

