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• 3-particle 
scattering • Confinement though QCD 

correlation functions 
• Quark Model is back 

• LS vs covariant 
amplitudes  
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Daniel Winney  
Sebastian Dawid 

E.Passemar at S&T review JLab 2017 
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(Very) exotic physics: constraining Lorentz symmetry violation 3

• Observer transformations do not 
affect results. 

• Particle transformation, e.g. rotation 
of the experiment in the background 
filed produces a physical effect.

• There is a well defined SME                                                               e.g 
(D.Colladay & V.A. Kostelecky, PRD55, 6760 (1997); PRD58, 1166002 (1998); PRD69, 105009 (2004)) 

• Only a few constraints in the quark sector : use DIS, SDIS, Drell-Yan, … 

• The first estimate on the sidereal time dependent coefficients cf were obtained using HERA data: O(10-5) 
(V.A.Kostelecky, E.Lunghi, A.Vieira, PLB729, 272 (2017)) 

• Sensitivity studies for EIC are under way: N.Sherrill, A.Accardi, E.Lunghi. Possible interest for CLAS12 ? 
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Exotic physics:  Pc at JLAB 4

Confirmation possible thorough photoproduction
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CLAS12: Day 1 experiments  5

• Early experiments can take advantage 
of the high Ɣ photon energy to study 
production mechanisms. 

• Exchange mechanisms determine 
formation of resonances (in top and 
bottom vertex)  

• Electroproduction: t-channel mesons vs 
quarks (GPD’S)  (with C.Wise)   

• Factorization: Couplings can be 
compared with theoretical predictions  

• One Pion Exchange is special (OPE): 
Pion from factor, transverse size of the 
nucleon, probe of physics beyond 
factorization.
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Resonance production at JLAB 12GeV 6
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Resonance production at JLAB 12GeV 7
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Beam asymmetry: measurement of the exchange process 8

• Photoproduction of neutral pseudo-scalars 
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9

• Possible tension between GlueX and SLAC data ? 

Beam asymmetry: measurement of the exchange process
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η/η’ asymmetry probes coupling to strangness 10

V.Mathieu et al. arXiv:1704.07684 (to appear in Phys. Lett. B) 
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• Factorized pion exchange 

• Weak energy dependence (αeff ~ 0) 
• Forward dip in dσ/dt 

γ p → π- Δ++
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• Energy dependence ✔  
• ρ/a2 needed at large -t

•  σ dominated by σ⫿  (un natural exch.) > σ⟘ (natural exch.) ✔  
• Forward dip ?

OPE is very interesting 
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Absorption models and alternatives 12

b

OPE-flipOPE-no-flip

• Partial waves l < lclas. are absorbed by FSI. (b~lq): 

 — Poor Man’s Absorption (PMA)  

— b-space  

— s-channel 

N,Δ production enable to study absorption mechanisms, eg. FSI dynamics 

• Δ production • N recoil 
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OPE’s role in binding 13

bound state : pole on the 
physical energy plane 

II(-)

3S

1S

V(r)

r

3S

1S

Deuteron the np molecule 
bound by meson exchange 

forces 

virtual state : pole on “unphysical 
sheet” closest the physical region 

thresholds “cut”  
the physical energy plane 

Threshold

• Threshold “states” are important 
because scattering amplitudes near 
threshold are universal. 

• f0(980), a0(980), a1(1420), 
Lambda(1405), XYZ: These threshold 
“states” can potentially illuminate on 
the role of binding force, e.g. OPE  

• In some cases virtual pion exchange 
can become real and three body 
formalism is required, e.g. D* D → 
X(3872) → DDπ

_
_

(M.Mai, et al. Eur.Phys.J A53, 177 (2017))
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“Day 2” experiments 14
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Ongoing JPAC analysis by L.Bibrzycki 

OPE

• Interference 
produces dips: 
Manifestation of long 
range exchange in 
resonance 
production 

Extension to KK and application to f-mesons 
(see K.Hicks)

M.Battaglieri et a. CLAS, 
Phys. Rev. D80, 082005 
(2009) 

A.Szczurek, AS. Phys. Rev. 
D71, 054005 (2005) 

_
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Is L-S formalism relativistic ? 15

• Helicity (H) or spin-orbit (LS) 
formalism  

• Covariant projection (CP) (tensor)  
formalism 

But: 

The common lore is that the former is nonrelativistic and the later takes 
into account the proper relativistic corrections…  

• Both approaches use partial waves as building blocks.  

• H/LS are OK 

• CP reduces to H/LS with additional, (model) factors 
that depend on invariants  

• “Minimal” model dependence is “easiest” in the helicity-
formalism. Care is needed in identifying kinematical vs 
dynamical singularities, limitations of the partial waves 
series, etc.  
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Crossing symmetry in CP formalism 16

A.Pilloni at HADRONS 17
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Example B → J/ψ π K 17

Z(4430)

PRELIMINARY
• Data : MC generated from for to LHCb 

data including the Z. 

• Blue line : Fit using JPAC amplitudes 
with only K* resonances. 

• Possible source of discrepancy: higher 
spin K*’s 

1 < m(K⇡) < 1.39GeV
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Hybrid meson search golden channel: η(‘)π 18
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COMPASS JPC = 1-+ JPC = 2++

• Expect an narrow, a2(1320) 
resonance and determine 
parameters for the excited a’2 
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• Fit using N/D formalism with CDD poles 
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Origin of the poles 19
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More on impact 20

Plans for 2018 : Joint school 
with Mainz and/or BESIII


