Deep Processes Working Group Report

CLAS Collaboration Meeting Jefferson Lab, October 6th 2017

Publications:

CLAS 2016-10

Determination of the proton spin structure functions for $0.05 < Q^2 < 5.0 \text{ GeV}^2$ using CLAS

R. Fersch, submitted to Phys Rev C

CLAS 2017-06

Semi-inclusive π^0 target and beam-target asymmetries from 6 GeV electron scattering with CLAS

S. Jawalker, submitted to Phys. Lett. B

CLAS 2017-09

Measurement of Unpolarized6 Cross Sections and Polarized Cross Section Differences for Deeply Virtual Compton Scattering (DVCS) on the proton at the Jefferson Laboratory with CLAS, at $0.1 < x_B < 0.58$, $1.0 < Q2 < 4.8 \text{ GeV}^2$, and $0.09 < -t < 2.0 \text{ GeV}^2$,

H. Saylor, submitted to Phys. Rev. C

Ad Hoc Review

Analysis	Data	Lead Author	In progress
Beam spin asymmetries of ep->epη in the deep inelastic regime	e1f	A. Kim	Done Sep 17
Hard exclusive backward-angled single charged pion electronproduction from the proton at CLAS	e16	K. Park	2 nd round in September

Analysis Review

Analysis	Data	Author	In progress
Measurement of the spin structure g_1^d of the deuteron and its moments at low Q^2	eg4	K. Adihari	Done Sep 17
Beam asymmetries in exclusive π^+ electro production for W> 1.7 GeV from e16	e16	P. Bosted	Ongoing
Exploring the structure of the proton via semi-inclusive pion electroproduction	e1f	N. Harrison K. Joo	Ongoing

Analysis Review

Analysis	Data	Author	In progress
Exclusive electroproduction of the f0(980) and f2(1270) on the proton with CLAS	e1f	B. Garillon S. Niccolai	Brice busy with other project, V2 in one month
Di-hadron beam spin asymmetry in SIDIS electro production	eg1-dvcs	S. Pisano	Silvia busy with other project Last version in one month
Deep-virtual production of the $\rho^{\text{+}}$ meson off the proton	e1-dvcs	A. Fradi	Ahmed busy with other projects. Slow progress
Semi-inclusive pion production	e16	M. Osipenko	Working on a better alignment
Time-like Compton scattering	g12	I. Abayrak	Last record 2015

DPWG Meeting, 5th October 2017

Future plans and opportunities (morning)

CLAS6 Analysis (afternoon)

Studies and developments for CLAS12 (afternoon)

Common WG session (11:00 - 12:30):

- a possible analysis framework common to the whole Collaboration
- the role of the WGs in CLAS12 to help
 strengthening the analysis quality and shortening the review time

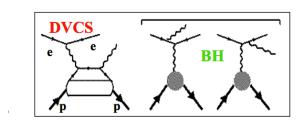
Positron beam opportunities with CLAS12*)

Volker Burkert

High Impact Science Program for Positrons?

- Deeply Virtual Compton Scattering (DVCS) with e⁺/e⁻
 - Extraction of leading twist Compton Form Factors (CFF) and GPDs
- Two-photon contributions to electron-proton elastic scattering
 - How well do we know the fundamental electromagnetic elastic proton form factors?
- Prepare Letter of Intent for PAC46?

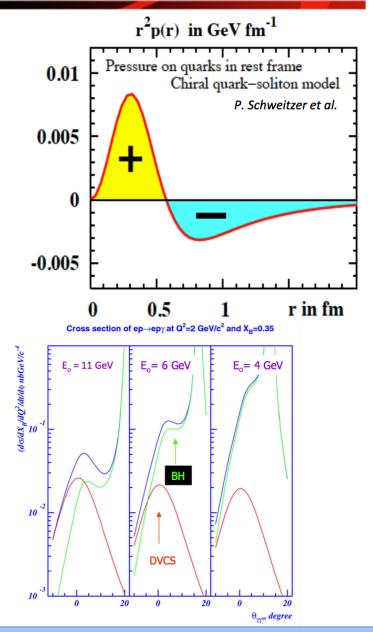
For positron source & injector/machine options: www.jlab.org/conferences/JPos2017



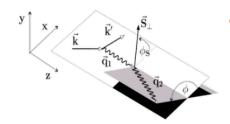
Accessing the forces & pressure on quarks

$$M_2^q(t) + rac{4}{5} d_1(t) \xi^2 = rac{1}{2} \int_{-1}^1 \mathrm{d} x \, x H^q(x, \xi, t)$$

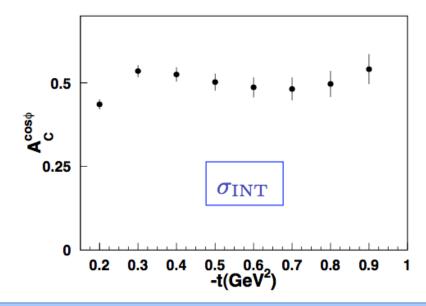
To determine $d_1(t)$ we need $Re\{H^q\}$ and $Im\{H^q\}$

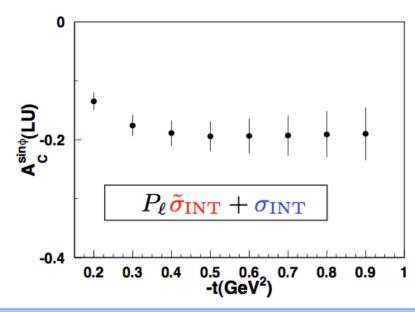

Measuring $d_1(t)$ will access the pressure distribution and shear forces on quarks in protons => how is confinement realized.

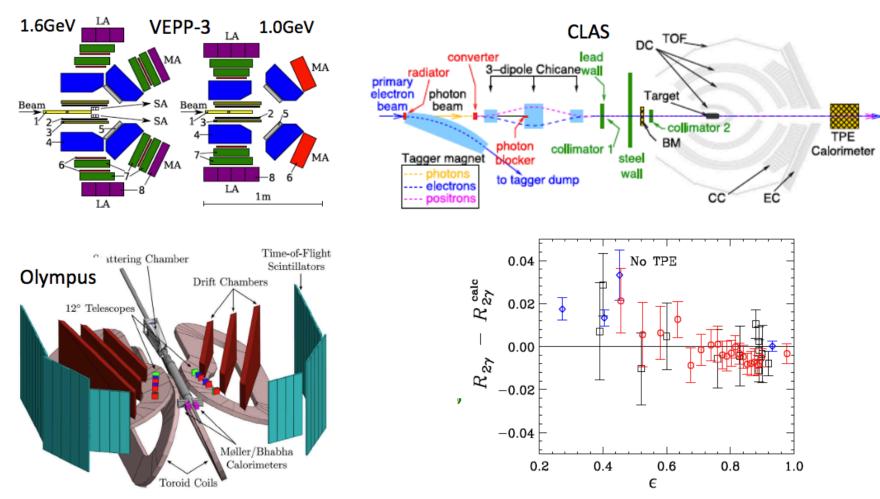
$$\frac{d^4\sigma}{dQ^2dx_Bdtd\phi} \sim |\mathcal{A}^{DVCS} + \mathcal{A}^{BH}|^2$$


 $\mathcal{A}^{\mathrm{BH}}$: given by elastic form factors $\mathsf{F_1}$, $\mathsf{F_2}$ $\mathcal{A}^{\mathrm{DVCS}}$: determined by GPDs

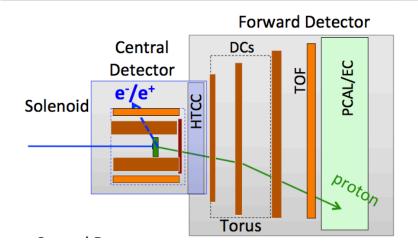
 $I \sim 2(A^{BH})Im(A^{DVCS})$

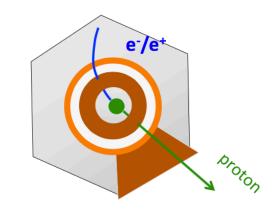

Accessing the forces & pressure on quarks

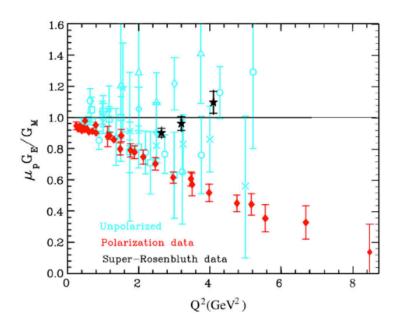

Polarized Beam, unpolarized Target:


$$\sigma_{ep o e\gamma p} = \sigma_{
m BH} + e_\ell \, \sigma_{
m INT} + P_\ell e_\ell \, ilde{\sigma}_{
m INT} + \sigma_{
m VCS} + P_\ell \, ilde{\sigma}_{
m VCS}$$
 where σ even in ϕ $\sigma_{
m INT} \propto {
m Re} \, {\cal A}_{\gamma^* N o \gamma N}$ $ilde{\sigma}$ odd in ϕ $ilde{\sigma}_{
m INT} \propto {
m Im} \, {\cal A}_{\gamma^* N o \gamma N}$

beam charge	beam pol.	combination
e^-	difference	$-\tilde{\sigma}_{ ext{INT}} + \tilde{\sigma}_{ ext{VCS}}$
difference	none	$\sigma_{ ext{INT}}$
difference	fixed	$P_\ell ilde{\sigma}_{ ext{INT}} + \sigma_{ ext{INT}}$

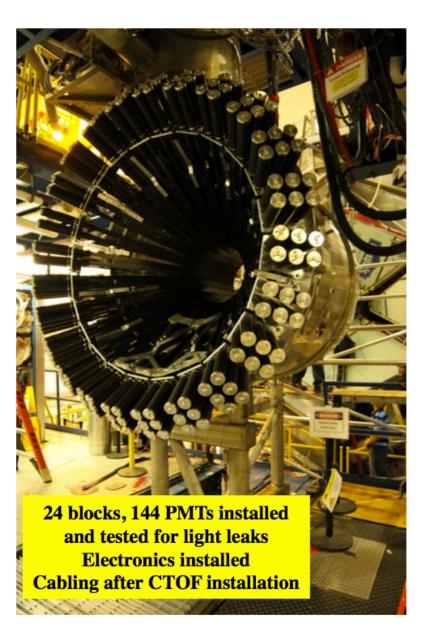

Review article "Two-photon exchange in elastic electron-proton scattering", A.Afanasev, P.G. Blunden, D. Hassel, B.A. Raue, PPNP 95 (2017) 245-278



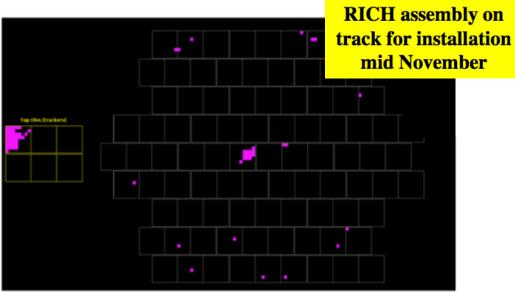

"The results of these experiments are **by no means definitive**. Most of the data are well below where the form factor discrepancy is significant ($Q^2 > 2 \text{GeV}^2$). Questions regarding the sources of the discrepancy remain largely unanswered"

"There is a clear need for similar experiments at larger Q^2 and at ϵ <0.5".

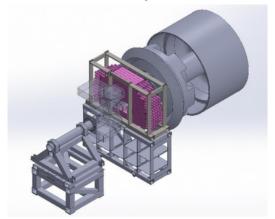
CLAS12 e^{+/-}p/e^{+/-}p experiment (generic)



Run-Group B: physics and setup


- RG-B: measurements of FFs, PDFs, GPDs, and TMDs using deuteron as a neutron target
- → quark-flavor separation, combining with proton results
- Common features to all experiments of RG-B: liquid deuterium target, 11-GeV beam
- Approved PAC days: 146; days in the run-groups table: 90

Neutron magnetic form factor Dua	al target A-	30	
Study of partonic distributions in SIDIS kaon production Dua	al target, RICH A-	56	
Boer-Mulders asymmetry in K SIDIS Duc	al target, RICH, two field settings A-	56	
Deeply virtual Compton scattering on the neutron Single-cell	target, CND, FT A (HI) 90	
Collinear nucleon structure at twist-3 Dua	l target, RICH		
In medium structure functions, SRC, and the EMC effect Single-cell target, BAND			

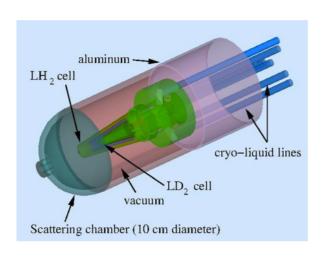


Status of BAND

« In medium structure functions, short-range correlations, and the EMC effect », O. Hen et al.

BAND: new scintillator-based back angle neutron detector

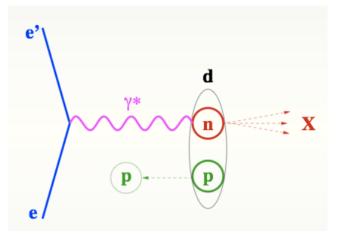
- 160-170°
- ~ 35% neutron detection efficiency
- $\sim 7x7$ cm² scintillators
- MRI applied for 2017

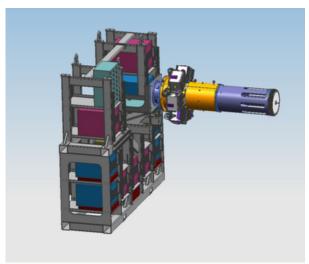

- ✓ Construction and tests starting in these days, to be completed by early summer, then shipping to JLab
- ✓ Discussion of ERR with the lab resulted in a general agreement to hold the BAND ERR as part of the general RG-B ERR, in early 2018 (?). BAND will NOT be a condition for RG-B to pass the ERR

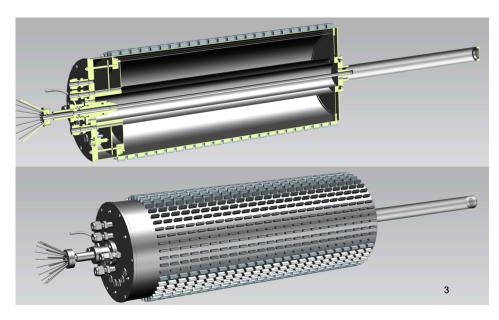
Status of Dual Target

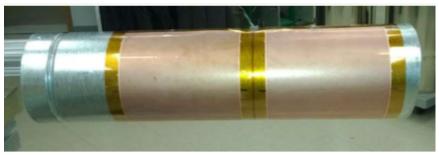
August 2017: as an ERR would be needed, soon, and the dual target is not ready for that, it is agreed to run the first part of RG-B with an ordinary deuterium target

Alternative idea: using deuterium data for NDE

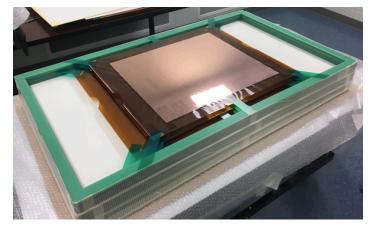

reaction $\gamma d \rightarrow pn\pi^+\pi^-$

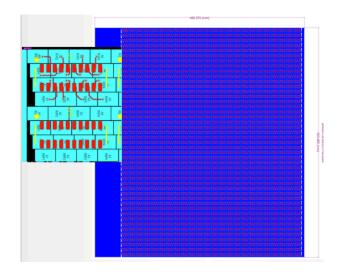



Sebastian Kuhn, Old Dominion University

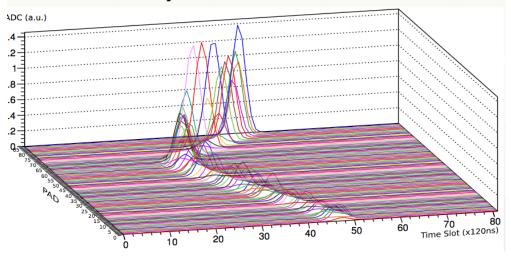

Status Report

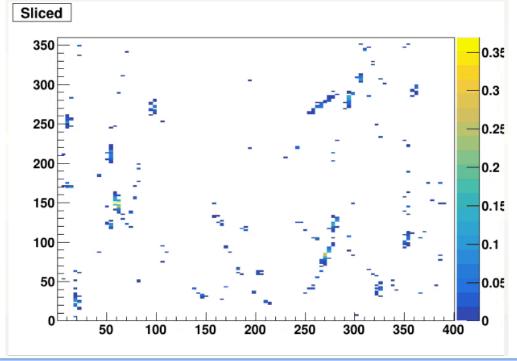
BONuS12 (E12-06-113, CLAS12 Run Group F)



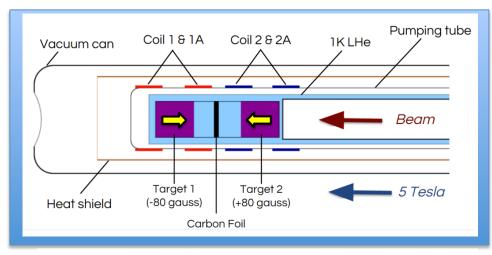


Scheduled to be ready by the end of FY2018

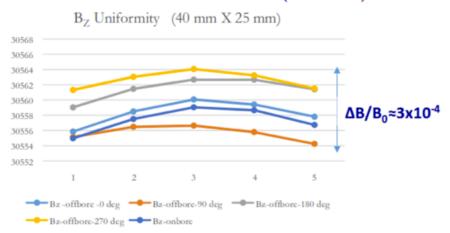

GEM foils

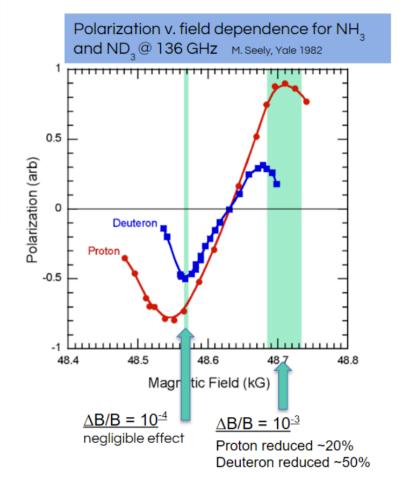


DREAM based Readout

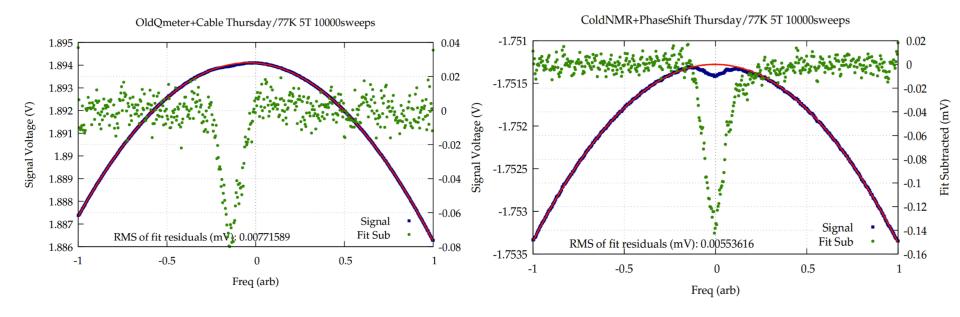


- Full simulation with signal shape in DREAM
- GEMC, Coatjava, track finder, Kalman filter,...

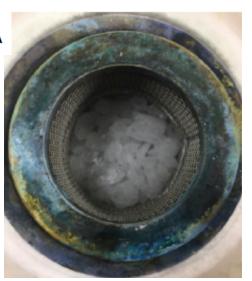




Update on the Longitudinally Polarized Target for CLAS12 Run Group C



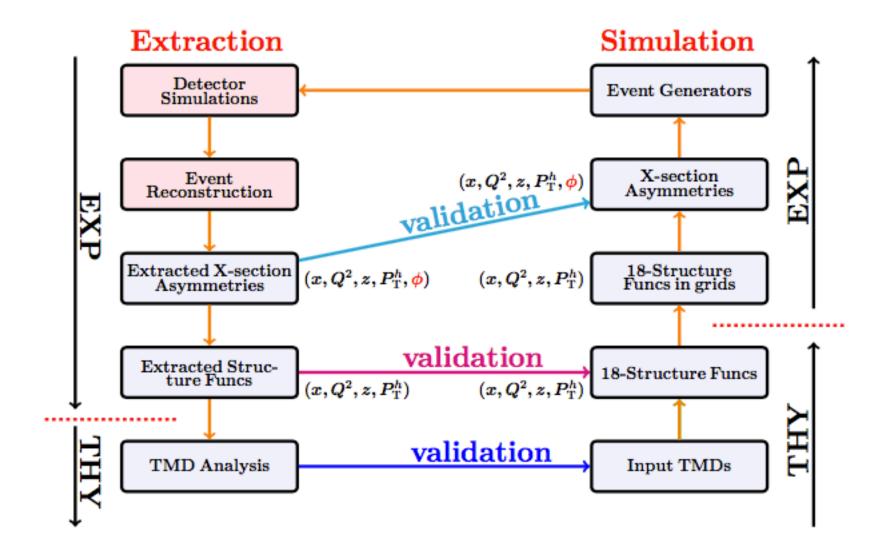
Azimuthal variation off-bore (12.5 mm)



NMR OLD NEW

Chile - UVA

Crystallized Ammonia


Heat Exchanger Test Leads

Nobuo Sato University of Connecticut

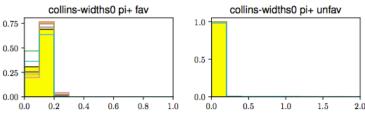
EVA workflow

Questions to be solved:

- Is the input and output "physics" consistent?
- "physics" does not need to be perfect, only approximated version is required

type	Name	\mathcal{K}_q	\mathcal{C}_q
\mathcal{F}_q	upol. PDF	1	f_1^q
\mathcal{F}_q	pol. PDF	1	g_1^q
\mathcal{F}_q	Transversity	1	h_1^q
\mathcal{F}_q	Sivers	$rac{2M^2}{\omega_q}$	$f_{1T}^{\perp(1)q}$
\mathcal{F}_q	Boer-Mulders	$rac{2M^2}{\omega_q}$	$h_1^{\perp(1)q}$
\mathcal{F}_q	Pretzelosity	$rac{2M^2}{\omega_q}$	$h_{1T}^{\perp(1)q}$
\mathcal{C}_q	FF	1	D_1^q
\mathcal{C}_q	Collins	$rac{2z^2m_h^2}{\omega_q}$	$H_1^{\perp(1)q}$

ready, in progress, TODO

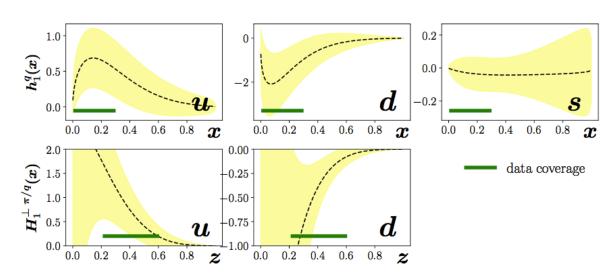

• Use the approximated "physics" to interpret P_{hT} dependent SIDIS data.

 Factorization ansatz for partons in nucleon


$$\mathcal{F}_q(x,p_\perp) = \mathcal{K}_q \; \mathcal{C}_q(x) rac{\exp\left(-k_\perp^2/\omega_q
ight)}{\pi\omega_q}$$

 Factorization ansatz for partons to hadrons

$$\mathcal{D}_q(z,p_\perp) = \mathcal{K}_q \; \mathcal{C}_q(z) rac{\exp\left(-P_\perp^2/\omega_q
ight)}{\pi\omega_q}$$



Collins π parameters

Transversity

Collins function

Wandzura-Wilczek type Approximation in TMDs

Kemal Tezgin

University of Connecticut

By using the Equations of Motion (EoM) of a quark field in QCD;

$$(i\not\!\!D-m)\psi=0$$

decompose a twist-3 PDF obtained by $\langle \bar{q}q \rangle$ correlator to a twist-2 PDF and a "pure" twist-3 PDF.

$$g_T^q(x) = \int_x^1 \frac{dy}{y} g_1^q(y) + \tilde{g}_T^q(x) \approx \int_x^1 \frac{dy}{y} g_1^q(y)$$
$$h_L^q(x) = 2x \int_x^1 \frac{dy}{y^2} h_1^q(y) + \tilde{h}_L^q(x) \approx 2x \int_x^1 \frac{dy}{y^2} h_1^q(y).$$

- WW Approximation is supported by Semi-Classical approximations in QCD; like Chiral Quark Soliton Model.
 [Ref:J. Balla, M. V. Polyakov and C. Weiss, Nucl. Phys. B510 (1998)]
- Also supported by data [SLAC, JLAB].

Example: $F_{UU}^{\cos\phi_h}$

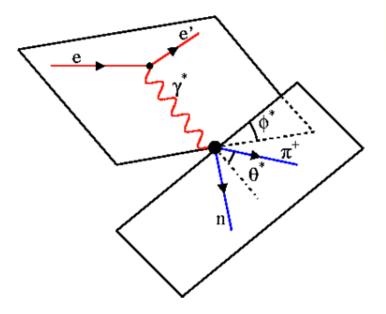
• Let us apply WW-type approximation to a specific structure function, $F_{UU}^{cos\phi_h}$. The original definition is given by

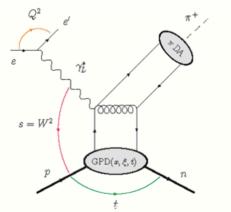
$$F_{UU}^{\cos\phi_h} = rac{2M}{Q}\,\mathcal{C}igg[\quad rac{\hat{\mathbf{h}}\cdot\mathbf{P}_\perp}{zm_h}igg(xh\,H_1^\perp + rac{m_h}{M}\,f_1rac{ ilde{D}^\perp}{z}igg) - rac{\hat{\mathbf{h}}\cdot\mathbf{k}_\perp}{M}igg(xf^\perp D_1 + rac{m_h}{M}\,h_1^\perprac{ ilde{H}}{z}igg)igg]$$

 After neglecting the tilde ("pure" twist-3) terms and applying the following WW-type approximations

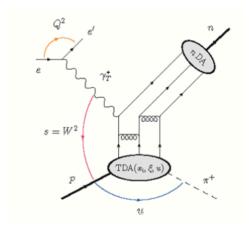
$$xf^{\perp q}(x, k_{\perp}^2) \approx f_1^q(x, k_{\perp}^2)$$

 $xh^q(x, k_{\perp}^2) \approx -\frac{k_{\perp}^2}{M^2}h_1^{\perp}(x, k_{\perp}^2)$

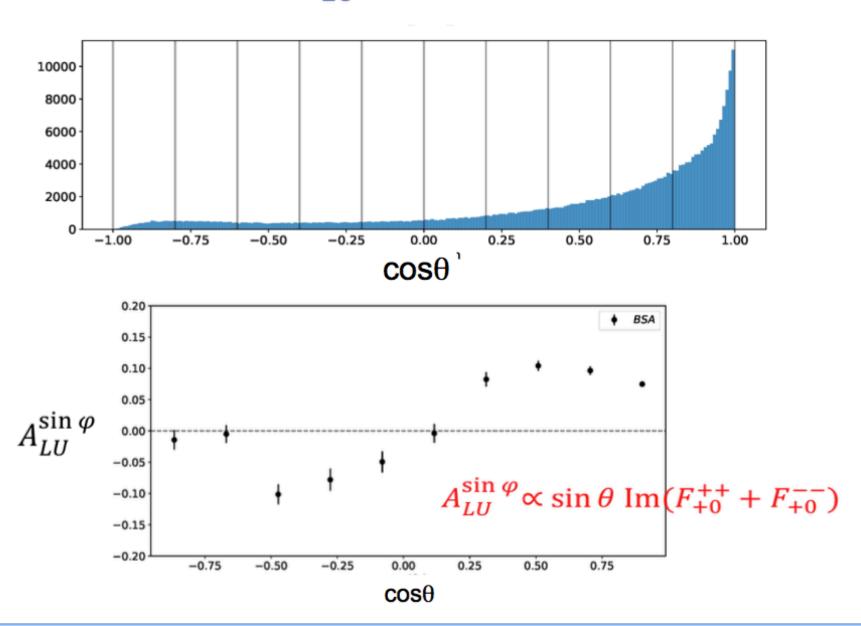

We obtain


$$F_{UU}^{cos\phi_h} = \frac{2M}{Q} \mathcal{C} \Big[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{P}_{\perp}}{zm_h} \Big(\frac{k_{\perp}^2}{M^2} h_1^{\perp} H_1^{\perp} \Big) - \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{\perp}}{M} \Big(f_1 D_1 \Big) \Big]$$

Beam spin asymmetries from hard exclusive π⁺ electroproduction

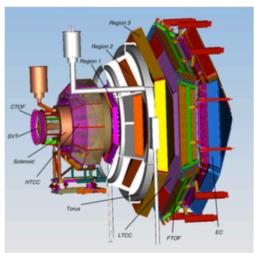

David Riser

University of Connecticut


Near forward Small t Large u

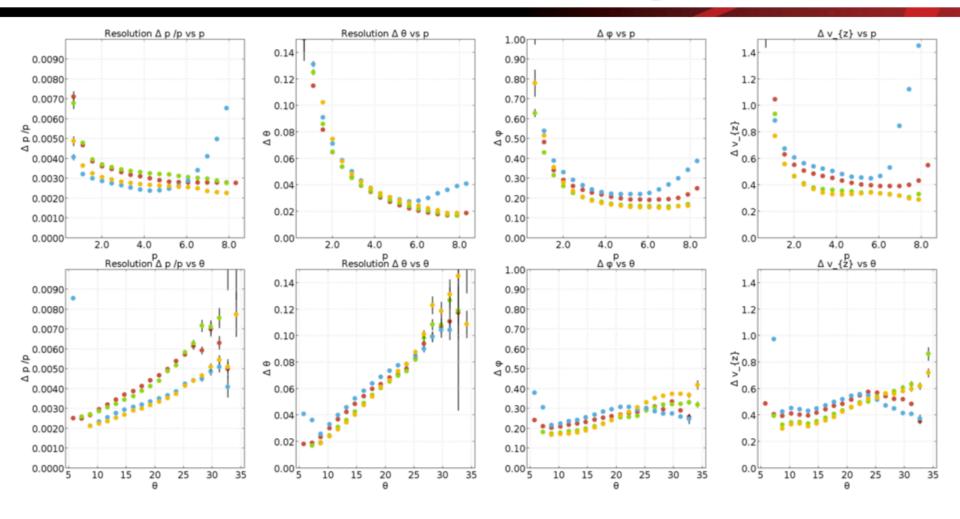
Near backward Small u Large t

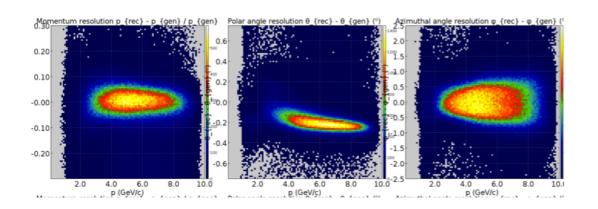
$$rac{d^4\sigma}{dQ^2dx_Bd\phi dt} \sim (\sigma_T + \epsilon_L\sigma_L + \epsilon\sigma_{TT}\cos2\phi + \sqrt{2\epsilon_L(1+\epsilon)}\sigma_{LT}\cos\phi + h\sqrt{2\epsilon_L(1-\epsilon)}\sigma_{LT'}\sin\phi)$$
 Beam helicity


$A_{LU}^{\sin \varphi}$ for ep \rightarrow e π^+ n

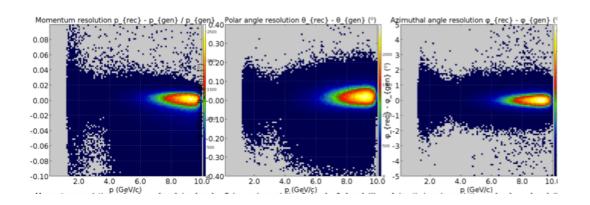
CLAS12 Simulation Studies of DV γ and DV ϕ

F.-X. Girod

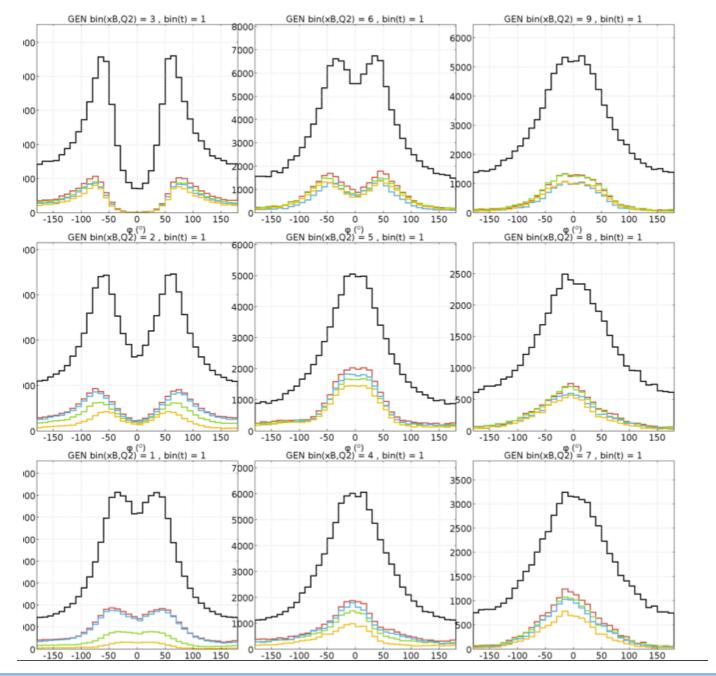

Jefferson Laboratory

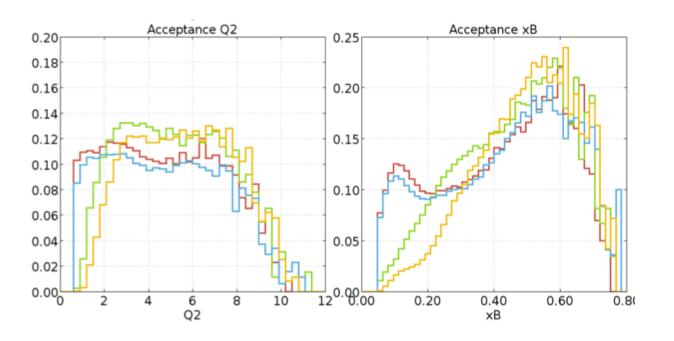

- CLAS12 Full Chain Simulations works
- You should use it and check it
- Baseline Specifications are met or exceeded
- Particles Identification, Event Builder
- The PAC approved proposals were obtained with questionable acceptances and resolutions
- Document your study on optimization for your proposal
- Basis for final discussion on the run plan and configuration

Electron Resolutions vs Magnetic Field

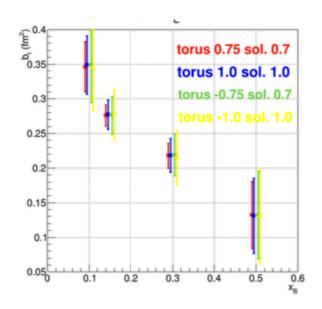


TORUS -1.0 / SOL. 1.0 TORUS -0.75 / SOL. 0.7 TORUS +1.0 / SOL. 1.0 TORUS 0.75 / SOL. 0.7


ECAL Photon Resolutions



FTCAL Photon Resolutions



Torus 0.75 / Sol 0.7

Torus 1 / Sol 1

Torus -0.75 / Sol 0.7

Torus -1 / Sol 1

 σ_L t-slopes extracted for different magnetic fields **Lower field and negative outbending torus** are prefered