Introd	uction

The CLAS12-MesonEx trigger system

Andrea Celentano

INFN-Genova

000	000	000000	60
Introduction	MesonEx trigger	Trigger studies	Conclusions

The MesonEx (E12-12-005) experiment

Meson Spectroscopy program with quasi-real photons: low Q^2 electron scattering on a hydrogen target.

Goals:

- Measure the light-quarks mesons spectrum in the mass range 1.0 3.0 ${\rm GeV/c^2}$
- Determine masses and properties of rare $q\overline{q}$ states
- Search for exotic mesons

Low Q^2 electron scattering:

- Provides a high-flux of high-energy, linearly polarized, quasi-real photons.
- Complementary and competitive to real photo-production
- Virtual photon kinematics and polarization determined event-by-event measuring scattered electron variables

Experimental technique: coincidence measurement between CLAS12 (final state hadrons) and Forward Tagger facility (low-angle scattered electron)

Introduction
000

MesonEx trigge

Trigger studies 0000000

The Forward Tagger Facility

3 components:

- Lead-tungstate calorimeter (FT-Cal): measure the energy of scattered electrons with few % resolution.
- Hodoscope (FT-Hodo): distinguish photons from electrons.
- Tracker (FT-Trck): determine the electron scattering plane.

Nominal design parameters:

	Range
$E_{e'}$	0.5 - 4.5 GeV
$\theta_{e'}$	$2.5^{o} - 4.5^{o}$
$\phi_{e'}$	0° - 360°
E_{γ}	6.5 - 10.5 GeV
P_{γ}	70 - 10 %
Q^2	0.01 - $0.3~{ m GeV}^2~(< Q^2 > 0.1~{ m GeV}^2)$
W	3.6 - 4.5 GeV

IntroductionMesonEx triggerTrigger studiesConclusionsooooooooooooooooTagged low Q^2 electron-scattering: kinematics and rates

Kinematic variables:

- $\nu = E E'$
- $Q^2 = 4EE' \sin^2(\theta_e/2)$
- $W^2 = M^2 + 2M\nu Q^2$

Virtual photon polarization:

•
$$\varepsilon_T = [1 + 2\frac{Q^2 + \nu^2}{Q^2} \tan^2(\theta_e/2)]^{-1}$$

•
$$\varepsilon_L = \frac{Q^2}{\nu^2} \varepsilon_T$$

Rates:

- Cross-section (low Q^2 limit, $\varepsilon_L = 0$): $\frac{d\sigma_e}{dE_e d\Omega_e dX} = \Gamma(E_e, \Omega_e) \cdot \frac{d\sigma_{\gamma}}{dX}$
- Virtual photon flux:

$$\Gamma(E_e, \Omega_e) = \frac{\alpha}{4\pi^2} \frac{E_e}{E_0} \frac{\nu}{Q^2} \left[\frac{(2E_0 - \nu)^2}{\nu^2} + 1 \right]$$

- Total flux over FT-acceptance: $\Sigma \equiv \int \Gamma dE_e d\Omega_e = 7\cdot 10^{-4}$

Introduction	MesonEx trigger	Trigger studies	Conclusions
000	●00		00
MesonEx trigger	r requirements		

MesonEx has a **broad** physics program, aiming to measure multiple reactions, characterized by different **topologies** and **kinematics**

Trigger system should be **as open as possible**, to allow measurement of all reactions of interest (as opposite to standard CLAS12 electron trigge!)

Critical points to consider for trigger design:

- Efficiency / uniformity (for the signal)
- Total rate (signal+background)
- Purity

Macon Ex triage	w avamian.		
000	000	0000000	00
Introduction	MesonEx trigger	Trigger studies	Conclusions

MesonEx trigger overview

Starting point for MesonEx trigger design: CLAS hadron spectroscopy program experience (g11/g12)

MesonEx primary trigger: coincidence between e^- detected in FT and N charged particles detected in CLAS12-FD (N: 2 or 3)

Individual reactions may require specific settings:

- $\gamma^* p \to p \pi^0$
 - Photons from π^0 decay mostly go in FT (low-t) / FT + EC (high-t)
 - FT-only / FT + EC neutral trigger required
- $\gamma^* p \to p K^+ K^-$
 - Proton typically goes in CLAS12-CD, CLAS12-FD trigger mainly selects $K^+K^-(p)$ topology
 - ϕ acceptance very low for this topology
 - Need to include CLAS12-CD to recover ϕ by measuring all topologies

Mason Ext triang			
000	000	000000	00
Introduction	MesonEx trigger	Trigger studies	Conclusions

MesonEx trigger overview

Starting point for MesonEx trigger design: CLAS hadron spectroscopy program experience (g11/g12)

MesonEx primary trigger: coincidence between e^- detected in FT and N charged particles detected in CLAS12-FD (N: 2 or 3)

Individual reactions may require specific settings:

Introduction
 $\infty \infty$ MesonEx trigger
 $\infty \infty$ Trigger studies
 $\infty \infty \infty \infty$ Conclusions
 $\infty \infty$ Trigger-rate estimates (a) 10^{35} cm⁻² s⁻¹ (CLAS12-FD only, N = 2)

Signal: e^- in FT $\otimes \geq 2$ charged particles in CLAS12-FD

- $\sigma_{\gamma}^{TOT} \simeq 100 \mu \text{barn}$
- $\sigma_{\gamma}^{TOT} \cdot \varepsilon \simeq 25 \,\mu {\rm barn}$ (2 ch) / 9 $\mu {\rm barn}$ (3 ch)

•
$$R_{signal} = \mathcal{L} \cdot \Sigma \cdot \sigma_{\gamma}^{Tot} \cdot \varepsilon$$

Background: random coincidence between FT and CLAS12-FD ($\Delta T = 50$ ns)

 FT: Elastic scatt. rad. tail, EM-backgrounds (Moller, Bremmstrahlung, ...)

• CLAS12-FD: hadrons production due to $\simeq 0^{\circ}$ scattered electrons. \mathcal{L}_{equiv} :

• 2 ch:
$$5 \cdot 10^{33}$$
 cm⁻² s⁻¹, $E_{\gamma^*} > 1.5$ GeV
• 3 ch: $3.7 \cdot 10^{33}$ cm⁻² s⁻¹, $E_{\gamma^*} > 3$ GeV

Summary table: (all rates in kHz) N=2

	FT	CLAS12-FD	Coinc.
Signal		1.6	
Bck	40 (el. tail) + 90 (EM)	125	1.6
Total		3.3	

Introduction
 $\infty \odot$ MesonEx trigger
 $\sigma \odot \odot$ Trigger studies
 $\sigma \odot \odot$ Conclusions
 $\sigma \odot$ Trigger-rate estimates (a) 10^{35} cm⁻² s⁻¹ (CLAS12-FD only, N = 2)

Signal: e^- in FT $\otimes \geq 2$ charged particles in CLAS12-FD

- $\sigma_{\gamma}^{TOT} \simeq 100 \mu \text{barn}$
- $\sigma_{\gamma}^{TOT} \cdot \varepsilon \simeq 25 \,\mu \text{barn} (2 \text{ ch}) \ / \ 9 \ \mu \text{barn} (3 \text{ ch})$
- $R_{signal} = \mathcal{L} \cdot \Sigma \cdot \sigma_{\gamma}^{Tot} \cdot \varepsilon$

Background: random coincidence between FT and CLAS12-FD ($\Delta T = 50$ ns)

• FT: Elastic scatt. rad. tail, EM-backgrounds (Moller, Bremmstrahlung, ...)

• CLAS12-FD: hadrons production due to $\simeq 0^{\circ}$ scattered electrons. \mathcal{L}_{equiv} :

• 2 ch: $5 \cdot 10^{33}$ cm⁻² s⁻¹, $E_{\gamma^*} > 1.5$ GeV • 3 ch: $3.7 \cdot 10^{33}$ cm⁻² s⁻¹, $E_{\gamma^*} > 3$ GeV

Summary table: (all rates in kHz) N=3

	FT	CLAS12-FD	Coinc.
Signal		0.6	
Bck	40 (el. tail) + 90 (EM)	33	0.5
Total		1.0	

Introduction	MesonEx trigger	Trigger studies	Conclusions
000	000	●000000	00
<u> </u>			

General strategy

Start by focusing on CLAS12-FD only and design charged-particles identification algorithm

- Evaluate single-particle trigger efficiency:
 - Generate and reconstruct events with 1 charged particle $(p/\pi^+/\pi^-)$ in CLAS12-FD
 - Identify events with a well-reconstructed particle: $N_{rec}(p, \theta, \phi)$
 - Identify events also satisfying charged-particle trigger: $N_{rec}^{trig}(p,\theta,\phi)$
 - Determine trigger efficiency: $\varepsilon=N_{rec}^{trig}/N_{rec}\rightarrow$ ideally, in the kinematic regions where particles are tracked and reconstructed, trigger efficiency should be flat and close to 100%
- Evaluate foreseen background rate
- Study trigger effects for specific reactions (e.g. $\gamma p \rightarrow p \pi^+ \pi^-$)

Example: π^+ , torus 0.75 inbending, solenoid 0.8. Charged particle algorithm: any FTOF-1B / FTOF2 hit above 1 MeV. Plots show all momenta

Introduction	MesonEx trigger	Trigger studies	Conclusions
000	000	0●00000	00
Background rate	e evaluation		

In order to evaluate the background rate in CLAS12-FD for the 50-ns time coincidence with FT, a "time-slice" approach was followed.

- When asking for $N\geq 2$ charged particles in CLAS12-FD, main contribution is from multi-hadrons production ($R_{CLAS12-FD}=125~{\rm kHZ})$
- There may be a sizeable contribution due to random coincidences due to pile-up, i.e. hits due to particles coming from different e^- bunches
- Different topologies are possible: 2 hadrons / 1 hadron + 1 EM hit / \ldots
- Total background rate is evaluated by simulating a 250 ns time window () $10^{35}~{\rm cm}^{-2}~{\rm s}^{-1},$ and counting hits within a 50-ns time window starting at $T=150~{\rm ns}$
- Results are evaluated considering in GEMC full physics list / EM only physics list
 - Full physics list already includes multi-hadron production
 - Results are a G4 estimate of $R_{CLAS12-FD}$: multi-hadron + pile-up
 - G4 over-estimates hadron production: results obtainer with full physics list should be considered as an upper limit only

	and the state of the state of the state			
000	000	000000	00	
Introduction	MesonEx trigger	Trigger studies	Conclusions	

CLAS12-FD charged particles identification algorithm: FTOF only

CLAS12-FD charged particles identification algorithm development started from FTOF^1 :

- 1 MeV threshold on deposited energy
- Invidual paddles rate is too high to implement an CLAS-like trigger system (OR of all counters in a sector)
- FTOF1A-FTOF1B time coincidence (20 ns) and geometrical matching (50 cm) implemented
- No FTOF2 loss in trigger acceptance

Results (torus -0.75, solenoid +0.8):

- Trigger efficiency $\geq 90\%$
- Rates in $\Delta T = 50$ ns time window:

Phys. list	N				
Filys. list	1	2 (any)	2 (diff.)	3	
EM-only	5 MHz	870 kHz	720 kHz	111 kHz	
Full	5.6 MHz	1.2 MHz	990 kHz	274 kHz	

¹PCAL not yet considered - waiting for cluster time reconstruction

High rate source in EM case currently being investigated. If numbers are confirmed, these results show FTOF-only algorithm is not sufficient for N=2 / critical for N=3

 Introduction
 MesonEx trigger
 Trigger studies
 Conclusions

 000
 000
 000
 000

 CLAS12-FD charged particles identification algorithm: FTOF only

Example: EM phys. list only, event with 2 charged particles identified as FTOF1A/FTOF1B time coincidence and geometric match

Introduction MesonEx trigger Trigger studies Co	onclusions 0

CLAS12-FD charged particles identification algorithm: FTOF-DC match

Geometrical matching between R3-crosses and FTOF hits (panel 1B / panel 2). No time coincidence imposed between R3 crosses and FTOF hits in the 250-ns event time window

- For each sector, project hit-based R3 crosses to FTOF1B / FTOF2 planes in that sector
- Select hits from FTOF1B / FTOF2 above threshold
- Verify if, among all hits, there's at least one in geometrical coincidence with the projected cross, within $\Delta R=$ 50 cm

(torus -0.75, solenoid +0.8):

- Average trigger efficiency \rightarrow next slide
- Rates in $\Delta T = 50$ ns time window:

Phys. list	Ν				
	1	2 (any)	2 (diff.)	3	
EM-only	480 kHz	33 kHz	11 kHz	3 kHz	
Full	1.9 MHz	423 kHz	244 kHz	109 kHz	

• EM-rate under control

Introduction MesonEx trigger Trigger studies Conclusions 000 000 000000 00 00

CLAS12-FD charged particles identification algorithm: FTOF-DC match

Example: EM phys. list only, event with 2 charged particles identified each as one hit in FTOF1B/FTOF2 matched with R3 cross projection

Introduction 000

MesonEx trigge

Trigger studies 000000●

FTOF-DC match: trigger efficiency

16/19

Introduction	MesonEx trigger	Trigger studies	Conclusions
000	000		●0
M E . ·			

MesonEx trigger study with data

MesonEx trigger effort: study algorithms and develop tools and plans to commission hadronic trigger - evaluating the effect of implemenation choices (thresholds / coinc. window / ...) on the measured data

Possible procedure to study trigger uniformity with real data: similar to MC studies, with the (remarkable) difference related to the trigger bias itself. For the N = 2 case:

- Select three-track events with given topology (e.g. $\pi^+\pi^-p$)
- Let p_1, p_2, p_3 , be the trigger efficiency for each track each depending on that particle kin. variables
- Number of measured events with all three-particles satisfying trigger condition: $N_{all}=p_1\,p_2\,p_3$
- Number of measured events with two (defined) particles (e.g. 2 and 3) satisfying trigger condition: $N_{two} = p_2 p_3$
- Trigger efficiency for particle 1: $\varepsilon_1 = N_{all}/N_{two} = p_1(p, \theta, \phi)$

This algorithm requires an efficient way to associate the trigger bit to a reconstructed particle.

Also identify possible "easily accessible" reaction channels to evaluate trigger effects on the physics

Introduction	MesonEx trigger	Trigger studies	Conclusions
000	000		●0
NA 5			

MesonEx trigger study with data

MesonEx trigger effort: study algorithms and develop tools and plans to commission hadronic trigger - evaluating the effect of implemenation choices (thresholds / coinc. window / ...) on the measured data

Possible procedure to study trigger uniformity with real data: similar to MC studies, with the (remarkable) difference related to the trigger bias itself. For the N = 2 case:

- Select three-track events with given topology (e.g. $\pi^+\pi^-p$)
- Let p_1 , p_2 , p_3 , be the trigger efficiency for each track the depending on that particle kin. variables
- Number of measured events with all the barticles satisfies trigger condition: $N_{all} = p_1 p_2 p_3$
- Number of measured events with two (defined) particles (e.g. 2 and 3) satisfying trigger condition: $N_{two} \neq v_2 p_3$
- condition: $N_{two} \neq V_{2} p_{3}$ • Trigger officiency for particle $1, \varepsilon_{1} = N_{all}/N_{two} = p_{1}(p, \theta, \phi)$

This algorithm requires the trigger bit to a reconstructed particle.

Also identify possible "easily accessible" reaction channels to evaluate trigger effects on the physics

Introduction	MesonEx trigger	Trigger studies	Conclusions	
000	000	0000000	0	
Conclusions				

- MesonEx broad physics program requires an open trigger to allow measurement of different reactions, with different kinematics and topologies
- Primary MesonEx trigger: coincidence between e^- in FT and N=2/3 charged particles in CLAS12-FD
 - Trigger rate estimate (N = 2): 1.7 kHz (signal) + 1.6 kHz (bck)
 - Full BG evaluation trough MC (including pile-up effects) being performed, first results compatible with estimate (caveat with G4 hadrons production!)
 - Matching with DC information required to suppress EM rate required for ${\cal N}=2$
 - Tipical trigger efficiency $\geq 90\%$
- MesonEx trigger efforts are focused on the implementation, commissioning, and validation of this algorithm
 - On-going discussion with trigger group to identify practical implementations
 - Development of algorithm and tools to commission trigger during engineering run with real data currently in progress

Backup slides

Single-particle efficiency: reconstructed particles

To identify events with a "well-reconstructed" particle and compute $N_{rec}(p, \theta, \phi)$, I check if in the bank REC:Particle there's one entry satisfying following conditions:

1 $\Delta P/P < 20\%$, $\Delta \theta < 10^{\circ}$, $\Delta \phi < 20^{\circ}$

There's a matching FTOF hit associated with the particle in REC:Scintillator

For events with $38^{\circ} < \theta < 40^{\circ}$, I see that REC:Particle has tipically 2 entries, only one satisfying condition #1 above. However, FTOF hit associated with the non-matching one.

///	H REC::Scintillator ×									
	index	pindex	detector	sector	component	energy	time	x) v	z
	3	0	17) 1	19	4.31960	176.28140	327.552	64 -68.69802	602.86169
///	REC::Particle x									
	pid		px 1	ру	pz	vx	1 1		vz	charge
1	0)((.56855	-0.75559	1.30242	45.12827	33.95	700	99.07033	1
2	0)(!	12493	-0.29654	6.70572	6.08587E-4	-3.521	14E-5	1.63532	1
M MC::Particle x										
	pid	1	px	ру	pz	vx I) v		vz	mass
1	221	2	5.00138	-0.28512	6.53318	0.0)(0.	0 (0.0	0.0

Effect currently being investigated. Trigger efficiency results not affected, since this simplify in the ratio $\varepsilon = N_{rec}^{trec}(p, \theta, \phi)/N_{rec}(p, \theta, \phi)$