CLAS12 DAQ & Trigger Status and Timeline

Sergey Boyarinov Oct 3, 2017

Notation

- ECAL old EC (electromagnetic calorimeter)
- PCAL preshower calorimeter
- DC drift chamber
- HTCC high threshold cherenkov counter
- FT forward tagger
- TOF time-of-flight counters
- MM micromega tracker
- SVT silicon vertex tracker
- VTP VXS trigger processor (used on trigger stage 1 and stage 3)
- SSP subsystem processor (used on trigger stage 2)
- FADC flash analog-to-digital converter
- FPGA field-programmable gate array
- VHDL VHSIC Hardware Description Language (used to program FPGA)
- Xilinx FPGA manufacturer
- Vivado_HLS Xilinx High Level Synthesis (translates C++ to VHDL)
- Vivado Xilinx Design Suite (translates VHDL to binary image)
- GEMC CLAS12 GEANT4-based Simulation Package
- CLARA CLAS12 Reconstruction and Analysis Framework
- DAQ Data Acquisition System

CLAS12 DAQ Status

- Online computer cluster is 100% complete and operational
- Networking is 100% complete and operational
- DAQ software is operational, reliability is acceptable
- Performance observed (KPP): 5kHz, 200MByte/sec, 93% livetime (livetime is defined by hold-off timer = 15microsec)
- Performance expected: 10kHz, 400MBytes/sec, >90% livetime
- Performance limitation expected: 50kHz, 800MBytes/sec, >90% livetime (based on HallD DAQ performance)
- Electronics installed (and was used for KPP): ECAL, PCAL, FTOF, LTCC, DC, HTCC, CTOF, SVT
- TO DO: Electronics installed recently or will be installed soon: FT, FTMM, CND, MM, scalers, helicity
- TO DO: CAEN v1290/v1190 boards (re)calibration
- TO DO: Full DAQ performance test

DAQ/Trigger Hardware Layout

Runcontrol: setting DAQ/Trigger parameters

CLAS12 DAQ Commissioning

- Cosmic test (no central detectors): set electron trigger without HTCC (ECAL +PCAL and ECAL+PCAL+DC), check data integrity, check noise for DC and other detectors, check monitoring tools
- Cosmic test (central detectors only): set CTOF self-trigger and/or SVT self trigger, check data integrity and monitoring tools
- Random pulser test: set low channel thresholds, measure event rate, data rate and livetime; check monitoring tools performance
- Beam performance test: running from electron trigger measure event rate, data rates and livetime with different beam conditions and DAQ/Trigger settings
- Timeline: cosmic and pulser tests one month (November); beam test one shift; we assume that most of problems will be discovered and fixed during cosmic and pulser tests

CLAS12 Trigger Status

- All available trigger electronics installed. It includes 25 VTP boards (stage 1 and 3 of trigger system) in ECAL, PCAL, HTCC, FT, R3 for all sectors and R1/R2 for sector 5 in Drift Chamber and main trigger crates, 9 SSP boards in stage 2
- 20 move VTP boards arrived and getting ready for installation in remaining DC crates and FTOF crates, should be ready soon
- All C++ trigger implementation completed for ECAL, PCAL, DC and HTCC, TOF C++ implementation and FT C++ simulation to be done
- Trigger hardware implementation completed for ECAL, PCAL and DC, HTCC and FT is in progress, TOF will follow
- 'pixel' trigger is implemented in ECAL and PCAL for cosmic calibration purposes
- Validation procedures under development

CLAS12 Trigger System Layout

PCAL+DC trigger event example

CLAS12 Trigger Components Summary

stage	name	Clock (ns)	algorithm	input	Output to trigger	Output to datastream	Control registers
1	ECAL	32	Cluster finding with energy correction	FADC	4 clusters	List of clusters	Thresholds, windows
1	PCAL	32	Cluster finding with energy correction	FADC	4 clusters	List of clusters	Thresholds, windows
1	DC	32	Segment finding	DCRB	Segment mask	Segment mask	Thresholds, windows
1	HTCC	4	Cluster finding	FADC	Cluster mask	Cluster mask	Thresholds, windows
1	FT	4	Cluster finding	FADC	Cluster mask	Cluster mask	Thresholds, windows
2	sector	4	Stage1 components coincidence, DC road finding	stage1	Component mask	Component mask	Coincidence logic, windows
3	global	4	Stage2 components coincidence	stage2	16-bit trigger	Component mask	Coincidence logic, windows

NOTE: FTOF, CTOF and CND can be added to trigger stage 1

CLAS12 Trigger requirements

#	Notation	Reaction	Final State	Trigger	
1	R1			Generator	DAQ
2	R2	Random Tr.		Faraday cup	Background
3	E1	ep->e'X	e'(CLAS)	Ectot*(DCtrack)	ECAL only, prescaled
4	E2	ep->e'X	e'(CLAS)	PCAL*Ectot*(DCtrack)	PCAL*ECAL, prescaled
5	E3	ep->e'X	e'(CLAS)	HTCC*E2	Inclusive electron trigger
6	FT	ep->e'X	e'(FT)	FT _{cluster} (Emin,Emax)	FT only, prescaled
7	FT _{HODO}	ep->e'X	e'(FT)	FT*HODO1*HODO2	Electron in FT, prescaled
8	FT_{π}	ep->e'X	e'(FT)+pi0	FT _{HODO} *2clusters	Electron in FT+2γ, prescaled
9	H1	ep->e'h+X	1 hadron	FTOF1a*FTOF2*PCAL(DC _{track})	One hadron, prescaled
10	H2	ep->e'2h+X	2 hadrons	FTOF1a*FTOF2*PCAL(DC _{track})	Two hadrons, prescaled
11	H3	ep->e'3h+X	3 hadrons	FTOF1a*FTOF2*PCAL(DC _{track})	Three hadrons, prescaled
12	mu2	ep->e'p+μ+ μ ⁻	p+μ+ μ ⁻	FTOF1a*FTOF2*[PCAL+EC _{tot}]* (DC _{track})	μ+ μ ⁻ +hadron
13	FT1	ep->e'+h	e'(FT)+h+X	FT _{hodo} *H1	FT+ 1 hadron, prescaled
14	FT2	ep->e'+2h	e'(FT)+2h+X	FT _{hodo} *H2	FT+ 2 hadrons, prescaled
15	FT3	ep->e'+3h	e'(FT)+3h+X	FT _{hodo} *H3	FT+3 hadrons

Trigger Configuration file

VTP_CRATE adcecal1vtp # trigger stage 1 VTP_ECINNER_HIT_EMIN 100 # strip energy threshold for 1-dim peak search VTP_ECINNER_HIT_DT 8 # +-8clk = +-32ns: strip coincidence window to form 1-dim peaks, # and peak-coincidence window to form 2-dim clusters VTP_ECINNER_HIT_DALITZ 568 584 # x8: 71<dalitz<73

SSP_CRATE trig2 # trigger stage 2 SSP_SLOT all SSP_GT_STRG_ECALIN_CLUSTER_EMIN_EN 0 1 # enable ECAL_INNER clusters in trigger SSP_GT_STRG_ECALIN_CLUSTER_EMIN 0 2000 # ECAL_INNER cluster threshold SSP_GT_STRG_ECALIN_CLUSTER_WIDTH 0 100 # coincidence window to coincide with PCAL etc

VTP_CRATE trig2vtp # trigger stage 3 # slot: 10 13 09 14 08 15 07 16 06 17 05 18 04 19 03 20 # payload: 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 VTP_PAYLOAD_EN 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 # 6780 corresponds to 7900 FADC latency VTP_GT_LATENCY 6780 # sector bits: trig number, ssp trig mask, ssp sector mask, multiplicity, # coincidence=number_of_extended_clock_cycles VTP_GT_TRGBIT 8 1 1 1

There is a plan to provide GUI to handle configuration files

CLAS12 Trigger Validation

- All stage 1 trigger algorithms ether implemented in C++ (ECAL, PCAL, HTCC) or have C++ simulation of the hardware implementation (FT – to do)
- Higher stages will be simulated under discussion, likely the same way as stage 1
- Validation process has 2 steps:
- 1. Comparison between C++ implementation and hardware response
- 2. Comparison between C++ implementation and GEANT and reconstruction results

Xilinx Vivado_HLS (C++ to VHDL)

0 0 0	localhost:5902 (clonpc0.jlab.org:2 (boiarino)) - VNC Viewer				
🔁 Explorer 🕱 🛛 🔗 🗖 🗖	🗊 Synthesis(solution1) 🕱 🗧 🗖	3 "1 🗖 🗖			
▼ 😤 pcpeak2	ap_clk 8.00 6.99 3.00	• 👘 🗸			
▶ 🔊 Includes	Latency (clock cycles)	🗄 General Inform:			
▼ 🗏 Source	Summary	🗢 🗄 Performance E			
🛃 ecpeak2.cc	Latency Interval	🖺 Timing (ns)			
🗟 ectypes.h	min max min max Type	📔 Latency (cloc			
🖟 pclib.h	126 126 4 4 function	🗢 📰 Utilization Estin			
🖳 pcpeak2.cc	🗉 Detail	Summary			
🜆 Test Bench		Detail			
Solution1	Loop	⊽ 🗄 Interface			
		Summary			
% directives.tcl	Utilization Estimates				
🐇 script.tcl	Summary				
	Name BRAM_18K DSP48E FF LUT				
N Chin	DSP - 82				
P ⊘ ip	Expression 6242 24316				
P 🗁 Verliog					
▶ 🗁 vhdl	Memory				
▼ 🗁 syn	Multiplexer 1767				
🕨 🗁 report	Register - 67393 24608				
🕨 🗁 systemc	Total 0 82 73635 50691				
🕨 🗁 verilog	Available 2360 2880 692800 346400				
Þ 🕞 vhdl	Utilization (%) 0 2 10 14				
, end					
	📮 Console 🕱 🔇 👰 Errors 💩 Warnings	• 🖻 • 🖉 🗖 🗖			
Vivado HLS Console					
pcpeak2/solution1					
Vivado HI S 2017.2 - pcpeak2 (/usr/clas12/release/1.3.2/clop/src/trigger/vivado/pcpeak2) (op.clopdag4.ilab.org)					

Xilinx Vivado (VHDL to FPGA image)

- X * K 8	Syr	nthesis and Implementation Out-of-date more info	
Project Manager - vtp_pcs_v7		×	
Sources _ D L ^a ×	E Project Summary ×	ロ ピ ×	
	Violations 🗘	Timing	
pcenergyfanout.vhd pcfrac3.vhd of pcpeak1.vhd of pchitsort3.vhd of pcfrac2.vhd of pcstripspersistence.vhd of pchitsortout.vhd of pcpeakcoord.vhd of pchitsort11.vhd	mary: 1633 warnings 1633 warnings 18 advisories	Worst Negative Slack (WNS):0.058 nsTotal Negative Slack (TNS):0 nsNumber of Failing Endpoints:0Total Number of Endpoints:971017Implemented Timing ReportSetupHoldPulse Width	
pchitsort21.vhd pcal.vhd	ization - Post-Implementation	Power	
Hierarchy IP Sources Libraries Compile Order	LUT - 98% LUTRAM - 15% FF - 62% BRAM - 24% DSP - 15% IO - 48% GT - 60% BUFG - 19% MMCM - 10%	Total On-Chip Power:18.848 WJunction Temperature:40.9 °CThermal Margin:44.1 °C (49.9 WEffective ∂JA:0.8 °C/WPower supplied to off-chip devices:0.045 WConfidence level:Low	
	0 25 50 75 100	Summary On-Chip	
Desian Runs		_ 🗆 1 ² X	

Validation Step 1: Comparison between C++ implementation and hardware response

/work/boiarino/data/vtp1_001212.evio.0 event 3:

TRIG PEAK [0][0]: coord=298 energy=1610 time=7 TRIG PEAK [1][0]: coord=174 energy=1012 time=7 TRIG PEAK [1][1]: coord=174 energy=294 time=8 TRIG PEAK [2][0]: coord=447 energy=1226 time=7 TRIG HIT [0]: coord=298 174 447 energy=4936 time=7

U: IT=7 peakU[0]: coord=298 energy=1610 V: IT=7 peakV[0]: coord=174 energy=1012 W: IT=7 peakW[0]: coord=447 energy=1226 SOFT HIT: coord=298 174 447 energy=4936

Validation Step 2: Comparison between C++ implementation and GEANT/ CLARA

NOTE: that step allows Offline Reconstruction team to get ready for trigger results processing during beam time

C++ trigger on GEANT data – ECAL event example

19

Validation Step 2: Comparison between C++ implementation and GEANT/ CLARA (cont.)

ECAL cluster finding: difference trigger-offline

Validation Step 2: Comparison between C++ implementation and GEANT/ CLARA (cont.)

ECAL cluster finding: 5GeV electron, no PCAL, energy deposition, offline and C++ Trigger

Sampling fraction 27%

CLAS12 Trigger Commissioning

- Validation step 1 (cosmic): running from electron trigger (ECAL+PCAL and ECAL+PCAL+DC) and comparing hardware trigger implementation results with C++ trigger implementation results
- Validation step 2 (GEANT with different event generators): processing GEANT evio file (currently contains ECAL and PCAL, will add HTCC, DC and FT) through C++ trigger implementation and producing evio file with trigger banks for following offline reconstruction analysis
- Validation step 1(beam): running from electron trigger (ECAL+PCAL, ECAL +PCAL+DC, ECAL+PCAL+HTCC) and comparing hardware trigger banks with C++ trigger implementation banks
- Beam data with random pulser for trigger efficiency studies in offline reconstruction
- Beam data with electron trigger (ECAL+PCAL [+HTCC] [+DC]) with different trigger settings for trigger efficiency studies in offline reconstruction
- Beam data with FT trigger for trigger efficiency studies in offline reconstruction
- Timeline: cosmic and GEANT tests underway until beam time; beam validation 1 shift, after that data taking for detector and physics groups

Future trigger development plans

- Geometrical match between different detectors stage 2
- Drift Chamber road finding, probably using drift time information stage
 2
- Trigger on tracks multiplicity stage 3
- Timeline: during following year, may require new hardware, requests from physics groups will help

Conclusion

- CLAS12 DAQ, computing and network was tested during KPP run and worked as expected, reliability meets CLAS12 requirements, performance looks good but final tests have to be done with full CLAS12 configuration (waiting for remaining detectors electronics and complete trigger system)
- Trigger system (included ECAL and PCAL) worked as expected during KPP. Other trigger components (DC, HTCC and FT) were added after KPP and being tested with cosmic; remaining hardware has been received and being installed
- Timeline: few weeks before beam full system will be commissioned by taking cosmic data and running from random pulser; planning 2 shifts for beam commissioning