
Status	and	Results	From	Recent
CLAS	6	DVCS		Experiments

Carrying	coals	to	Newcastle



Lots	of	experimental	and	theoretical	activity
Spate	of	theory	articles:

Ji,			Radyushkin, Mueller,		Burkardt,			VGG

Experimental	collaborations:	Hermes	and	Jlab

DVCS	in	some	ways	most	attractive	at	JLab kinematics
- g perturbative.	
- Sensitive	to	GPD	H	– charge	distribution.

GPD

gg*

GPD

g,p ,h,f…g*

1996	Introduction	of	GPD	formalism	for	exclusive	reactions

B-HBut,	BH	dominates	cross	sections.
Need	polarization	variables	



Focus	on	DVCS.	
Sensitive	to	GPD	H	– charge	distribution.

But,	very	large	Bethe-Heitler interference GPD

gg*

GPD

g,p ,h,f…g*

1996	Introduction	of	GPD	– handbag	formalism	for	exclusive	reactions

Many	experiments	conducted	
at	Jlab for	g,p ,h,f final	states



1. Unpolarized cross section:

σunp∝|ℳBH|2+2ℳBHRe(ℳDVCS)+ |ℳDVCS|2

2.	Polarization	measurements,	either	beam	or	target,
eliminate	most	of	|ℳBH|2

Dσpol =σ+- σ- ~ 2ℳBHIm(ℳDVCS)

3.	Asymmetry	measurements	A	∝ Dσpol /σunp

(AUL ,	ALU ,	ALL )	

ALU least	difficult.		First	experiments	measured	AUL.	

Experiments	Performed	at	CLAS	6



Experiments	do	not	directly	measure	GPDs	
but	Compton	Form	Factors
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GPDs:

Form	
Factors:

𝐹𝑇 = 𝐻𝑇, 𝐻𝑇2 ,E𝑇,	𝐸𝑇2

ℱ𝑇=ℋ𝑇,ℋ𝑇2 ,ℰ𝑇, ℰ𝑇2

DVMP	p, h

ℱ=ℋ,ℋ6 ,ℰ	, ℰ8

𝐹 = 𝐻,𝐻6,E,	𝐸9

DVCS

Different	observables	sensitive
to	different	CFFs

σunp = σ→+σ← σpol = σ→−σ←

σunp ∝ |MBH |2 + 2MBH Re(MDV CS) + |MDV CS |2

σpol ∝ 2MBH Im(MDV CS)

|MDV CS |2
|MBH |2 σunp

x
σpol

x = ±ξ

ALU = σ→−σ←
σ→+σ←

σunp = σ→+σ← ∝ HRe

+

σpol = σ→ − σ← ∝ HIm +

AC ∝ HRe

ALU ∝ HIm

AUL ∝ HIm, H̃Im

ALL ∝ HRe, H̃Re

AUT ∝ EIm

ALT ∝ HRe, ERe
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DVCS		 𝐻, 		𝐻2
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FIG. 3. Missing mass squared distribution for the reaction
ep → epX . Events are integrated in the range of φ from
70◦ to 110◦. The curves are described in the text.

where Pe is the beam polarization, N+(−)
γ is the num-

ber of ep → epγ events at positive (negative) beam
helicity. The average beam polarization, Pe = 70%, was
measured using Møller scattering.

In Figure 4 we present our main result, the φ depen-
dence of A. Data in each φ bin are integrated in the range
of Q2 from 1.00 (GeV/c)2 to 1.75 (GeV/c)2 and −t from
0.1 (GeV/c)2 to 0.3 (GeV/c)2. The error bars shown are
statistical. Most of the systematic uncertainties related
to the experiment do not contribute to A. Only the error
in the measurement of beam polarization, ±1.65%, re-
mains. There is also a systematic error in the calculation
of Nγ due to the determination of the mean and stan-
dard deviation of the Gaussian functions for the photon
and pion missing mass squared distributions, and also
due to the fit procedure to the M2

x distributions. These
errors are defined as a deviation of A from its central
value, when the mean and standard deviation of Gaus-
sians are shifted within their errors, and when different
fit techniques were used (see [12] for details).

The data points are fitted with the function A (φ) =
α sin φ+β sin 2φ. The fitted parameters are α = 0.202±
0.028stat±0.013sys and β = −0.024±0.021stat±0.009sys.
In the Bjorken regime β should vanish, leaving only the
contribution from transverse photons (see e.g. Ref. [10]).
In Figure 4 the dark shaded region corresponds to the
range of the fitted function within the statistical uncer-
tainties of α and β. The light shaded region includes
systematic uncertainties on these parameters, estimated
using the method described above.

The resulting asymmetry is in a good agreement with
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FIG. 4. φ dependence of the beam spin asymmetry A. The
dark shaded region is the range of the fitted function A(φ)
defined by the statistical errors of parameters α and β, the
light shaded region includes systematic uncertainties added
linearly to the statistical uncertainties. The curves are model
calculations according to Refs. [6,11] and are discussed in the
text.

a sinφ modulation. Curves in Figure 4 show the re-
sults of theoretical calculations from Refs. [5,11,13] at
fixed values of Q2 = 1.25 (GeV/c)2, xB = 0.19, and
−t = 0.19 (GeV/c)2. The limited experimental informa-
tion does not allow to unambiguously extract GPDs from
the measurement. Description of GPDs that model the
ξ and t dependencies are therefore used to predict ob-
servables accessible in experiments. The dashed curve is
a calculation at leading-twist [5] and no ξ dependence in
the evaluation of GPDs, the dotted curve is leading-twist
with ξ dependence [5], and the solid curve includes twist-
3 [14,15] effects. All three calculations include the D-
term in the parameterization of the GPDs [16], which is
related to double pion contributions. For a more detailed
description of the model assumptions we refer to a recent
review [11]. We have estimated that the model asymme-
tries would be reduced by about 7% if they are averaged
over the experimental acceptances, bringing them some-
what closer to the measured data points.

Although the experimental results are close to the
lower range of theoretical predictions, none of the cal-
culations is in agreement with our data. This could be
due to several factors which need to be studied in fu-
ture research. Firstly, parameterizations of the ξ depen-
dence of the GPDs were modeled in only a few different

5

5

TABLE I: The π0 fraction and statistical uncertainties in ob-
served single photon events

φ (degree) Fπ0 ± ∆Fπ0 φ (degree) Fπ0 ± ∆Fπ0

0 − 36 0.106 ± 0.010 180 − 216 0.373 ± 0.022
36 − 72 0.117 ± 0.009 216 − 252 0.313 ± 0.019
72 − 108 0.242 ± 0.018 252 − 288 0.216 ± 0.015
108 − 144 0.324 ± 0.021 288 − 324 0.103 ± 0.008
144 − 180 0.414 ± 0.023 324 − 360 0.101 ± 0.007
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FIG. 5: The azimuthal angle φ dependence of the target-spin
asymmetry for exclusive electroproduction of photons after
subtraction of the π0 background. The dashed curve is the
full model prediction using the ξ-dependent GPD parameter-
ization [15] (bval=bsea=1, and E=Ẽ=0) based on MRST02
unpolarized PDFs [16] and polarized PDFs [17] for the twist-2
terms, and higher twists included in those terms. The dotted
curve shows the asymmetry when H̃=0. The solid curve is
described in the text.

β = −0.022±0.045stat±0.021sys. The AUL is dominated
by the sinφ term while the sin 2φ term is compatible with
zero within the error bars, indicating that higher twists
do not contribute significantly in our kinematical range.

To obtain information on the kinematic dependence of
the sin φ-moment of AUL (Asin φ

UL ) [9], the data were di-
vided into 3 bins in ξ and −t, respectively. The leading
term Asin φ

UL was extracted for each bin. The results are
shown in Fig. 6, where the asymmetry was integrated
over the other kinematic variables. A clear ξ-dependence
of Asin φ

UL is seen, with asymmetries increasing with ξ. The
theoretical calculations shown in Fig. 5 and Fig. 6 have
been obtained by including target mass corrections. Un-
like Deep Inelastic Scattering (DIS), a full calculation of
such corrections is still an open problem for DVCS. We
have however included the kinematical higher twist ef-
fects in the twist-2 amplitude. In the presence of those
effects the GPDs entering in the asymmetry Eq.( 2) are
proportional to GPDs at (ξ′, ξ, t), where the difference
between ξ′ and ξ include terms proportional to M2/Q2

and −t/Q2 as shown in Ref. [15]. As can be noticed on
Fig. 5 and Fig. 6, the thus obtained theoretical calcula-
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FIG. 6: The left panel shows the −t dependence of the sin φ-
moment of AUL for exclusive electroproduction of photons,
while the right shows the ξ dependence. Curves as in Fig. 5.

tion agrees within experimental uncertainties well with
the measurement.

In Fig. 5 and Fig. 6, the error bars are statistical,
and the systematic uncertainty is shown as a band at
the bottom. The sources of systematic uncertainties are
identified as the dilution factor calculation (∼ 4%), es-
timation of target polarization (∼ 7%), 15N polarization
(∼ 0.5%) [18], radiative corrections (< 0.1%) [19], eval-
uation of the π0-decay background from MC simulations
(< 2.5%), and the angle cut (< 5%).

Combined with the data expected from precision mea-
surements of the beam spin asymmetry which is dom-
inated by GPD H [20], these results will allow us to
constrain different GPDs. The target-spin asymmetry
in DVCS is also under study at HERMES [21].

In summary, we have presented the target-spin asym-
metry for exclusive electroproduction of photons. A sig-
nificant sinφ moment of the target-spin asymmetry is
observed and is consistent with predictions based on the
GPD formalism. The measured asymmetry is consis-
tent with predictions of a large contribution from GPD
H̃ . Kinematic dependences of the target-spin asymmetry
have also been studied. The leading term Asin φ

UL increases
with increasing ξ, in agreement with the model predic-
tion.
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A(f)	=	α	sinf +	β	sin2f.
 
α ~	0.20 				β ~	−0.02

First	CLAS	DVCS	experiments

Beam	Spin	Asymmetry Target	Spin	Asymmetry

Consistent	with	dominance	of	leading	order	(twist	2)
in	expansion:		A = S ansin(nf)

Q2 ~	1.82	GeV2/c2
t	~ 0.31	GeV2/c2
ξ ~ 0.16.	



CLAS	6	GeV	large	kinematic		acceptance	experiments	



CLAS	6	GeV	- Run 2005 - 𝑨𝑳𝑼
FX	Girod et	al.	Phys.	Rev.	Lett.	100,	162002	(2008).	
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Beam	spin	asymmetries.	Integrated	over	all		t
(Thesis	FX	Girod - 2006)

A =
sI1 sinφ

κ[c0 + c1 cosφ+ c2 cos 2φ] + [cI0 + cI1 cosφ]
,

κ =
y

xB(1 + ϵ2)2
.

cn+1/cn ∼ O
(

√

−t/Q2
)

c2

α β

A =
α sin φ

1 + β cos φ

α =
sI1

κc0 + cI0

β =
κc1 + cI1
κc0 + cI0

.

α β

σ

∆σ

xB

ep → eγX X
MX < 2

“Whether	integrated	in	t or	in	each	
t -bin,	the	φ- distributions	were	
always	found	to	be	compatible	with	
leading-twist dominance”

Expansion:		A = S ansin(nf)

Leading	order	twist	2:
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Figure 6: Black circles : beam spin asymmetry at � = 90� as a function of �t for di↵erent (Q2, xB)
bins, as measured by the JLab CLAS collaboration [9]. Green triangles are the results extracted
from the Hall A cross sections measurements [7]. The red square is an earlier result from the CLAS
collaboration [11].

proton longitudinally polarized target asymmetry ��UL

�UU
has been measured at fixed xB = 0.35 and

Q2=1.82 GeV2 at three t values by the CLAS collaboration [10] from the eg1 data set (we recall
that this observable is particularly sensitive to Im{H̃}, according to Eq. 13).

1.2 The e1-dvcs experiment and data

The e1-dvcs (E01-113) experiment [12] was the first CLAS experiment dedicated to DVCS. It was
carried out from March to May 2005 with a 5.75 GeV electron beam and a 2.485 cm-long liquid-
hydrogen target. The experimental setup was composed of CLAS and two new elements designed
and built for this experiment:

• an inner calorimeter (IC) located at about 55 cm of the target, at the forward angles, outside
the acceptance of the electromagnetic calorimeter (EC) of CLAS, where most DVCS/BH
photons are emitted (see Figure 7),

• a solenoid magnet installed around the target to shield the detectors, in particular the IC,
from Møller electrons.

In this document, we present an analysis which only considers the case where the
DVCS/BH photon is detected in the IC, discarding the events where it is detected in
the EC.

9

a(t)

Good	theory	fits*	show	robust	theory.	
(but	variations	among	models?)

Regge (Laget)
GPD	Twist-3
GPD	Twist-2

First CLAS	6	GeV		- Run 2005 ALU

FX	Girod et	al.	Phys.	Rev.	Lett.	100,	162002	(2008).	

𝐴IJ =
𝛼(𝑡) sin𝜙
1 + 𝛽 cos𝜙

*M.	Guidal,	M.	V.	Polyakov,	A.	V.	Radyushkin,	and	
M.	Vanderhaeghen,	Phys.	Rev.	D	72,	054013	(2005).	



Polarized	beam	and	target	- 2009

Different	geometry	and	beam	conditions

Beam,	Target	and	Double	beam/target		asymmetry

AUL - E.	Seder et	al.	Phys.	Rev.	Lett.	114,	032001	(2015)

Full	Article,	AUL	, ALU ALL	– S.	Pisano	et	al,	Phys.Rev.	D91	(2015)
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FIG. 19. (Color online) Target-spin asymmetry for the reaction ep ! e0p0� as a function of � for the various Q2-x
B

(rows) and
�t (columns) bins. The point-by-point systematic uncertainties are represented by the shaded bands. The solid black curve is
the fit with the function in Eq. (43). In the highest �t bin of the third (Q2-x

B

) bin, � was set to zero due to the limited �
coverage, while no fit is performed on the first �t bin of the highest (Q2-x

B

) bin, where only one data point is present. The
curves show the predictions of the VGG [23] (red-dashed) and KMM12 [26] (blue-dotted) models.

𝐴IJ:	sinf
dominance	
in	sin(nf) expansion	
→	twist	2	region.

Target	Spin	Asymmetry			 𝐴IJ =
𝛼IJ sin𝜙
1 + 𝛽 cos𝜙 22
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FIG. 22. (Color online) Double-spin asymmetry for the reaction ep ! e0p0� as a function of � for the various Q2-x
B

(rows) and
�t (columns) bins. The point-by-point systematic uncertainties are represented by the shaded bands. The solid black curve is
the fit with the function in Eq. (45). In the highest �t bin of the third (Q2-x

B

) bin �, was set to zero due to the limited �
coverage, while no fit is performed on the first �t bin of the highest (Q2-x

B

) bin, where only one data point is present. The
red-dashed and cyan-dotted curves are predictions of the VGG and KMM12 models, respectively. The pink two-dot-dashed
curves are the calculations for the Bethe-Heitler process.

Double	Spin	Asymmetry 𝐴JJ =
𝜅JJ +𝜆JJ cos𝜙
1 + 𝛽 cos𝜙

𝐴JJ:	flat	
Distribution→
𝜅JJ - BH
dominance	
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FIG. 22. (Color online) Double-spin asymmetry for the reaction ep ! e0p0� as a function of � for the various Q2-x
B

(rows) and
�t (columns) bins. The point-by-point systematic uncertainties are represented by the shaded bands. The solid black curve is
the fit with the function in Eq. (45). In the highest �t bin of the third (Q2-x

B

) bin �, was set to zero due to the limited �
coverage, while no fit is performed on the first �t bin of the highest (Q2-x

B

) bin, where only one data point is present. The
red-dashed and cyan-dotted curves are predictions of the VGG and KMM12 models, respectively. The pink two-dot-dashed
curves are the calculations for the Bethe-Heitler process.

Fit		based	on	VGG	with	
CFF	allowed	to	vary



BSA	Sensitive		to	ℋℋ	𝑎𝑛𝑑	ℋ6TSA	Sensitive	to	

Agrees	with	axial	form	factor	measurements	involving	p0 and	n.

Smaller	t	slope	in	aUL than	aLU

Axial	charge	radius	is	smaller	than	charge	radius.

Compare	target	spin	asymmetry	with	beam	spin	asymmetry

5

U
L

A

-0.4

-0.2

0

0.2

0.4

0.6
2=1.52(GeV/c)>

2Q<

=0.179>Bx<

-0.4

-0.2

0

0.2

0.4

0.6
2=1.97(GeV/c)>

2Q<

=0.255>Bx<

-0.4

-0.2

0

0.2

0.4

0.6
2=2.41(GeV/c)>

2Q<

=0.255>Bx<

-0.4

-0.2

0

0.2

0.4

0.6
2=2.60(GeV/c)>

2Q<

=0.345>Bx<

Data Fit

VGG

systematic

(*)

100 200 300

2 = 3.31(GeV/c)>
2Q<

 = 0.453>Bx<

(*)

100 200 300

(*)

(deg)φ
100 200 300

0.08 0.18 0.30 0.70 2.00
2 -t (GeV/c)

FIG. 3. (Color online) Target-spin asymmetry (A
UL

) for
DVCS/BH events plotted as a function of � for each three-
dimensional bin in Q

2-x
B

(rows) and �t (columns - the bin
limits are shown on the top axis). The shaded bands are
the systematic uncertainties. The thin black line is the fit to
A

UL

with the function ↵ sin�

1+� cos�

(for all bins but those marked

with (⇤), which were fitted with ↵ sin� due to the limited �

coverage). The dashed/red lines are the predictions of the
VGG model [18].

suggests that the axial charge (linked to =mH̃) is more
concentrated in the center of the nucleon than the elec-
tric charge (linked to =mH), confirming what was first
observed in [17]. This is in agreement with the behavior
as a function of Q2 of the axial form factor, which is the
first moment in x of eH, and which was measured in ⇡+

electroproduction experiments on the proton as well as in
neutrino-nucleon scattering [19]. Our result adds to this
the extra information on the longitudinal momentum of
the partons.

The sixth panel of Fig. 4 shows our comparison of AUL

with the previous world data from HERMES [13] and
CLAS [12]: here our data were integrated over Q2-xB , as
there is no overlap between our 5 bin centers and the cen-
tral kinematics of the other datasets, and were fitted for
9 intervals in �t with the function ↵ sin�+� sin 2� to be
consistent with the fits employed for the other data. Our
results, in agreement with the previous ones, improve the
existing statistics by more than a factor of 5 in the �t
region up to ⇠ 0.4 (GeV/c)2, and extend the �t range
up to 1.6 (GeV/c)2.

In panels 1-5 of Fig. 4 predictions from four GPD-
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FIG. 4. (Color online) First five plots: �t dependence of the
sin� amplitude of A

UL

for each Q

2-x
B

bin. The shaded bands
represent the systematic uncertainties. The curves show the
predictions of four GPD models: i) VGG [18] (red-dashed),
ii) GK [20] (black-dotted), KMM12 [21] (blue-thick solid),
GGL [22] (black-solid). Bottom right plot: comparison of the
sin� amplitude of A

UL

as a function of �t for the results of
this work (black dots) integrated over all Q2 and x

B

values
(hQ2i = 2.4 (GeV/c)2, hx

B

i = 0.31), the HERMES results
[13] (green squares) at hQ2i = 2.459 (GeV/c)2, hx

B

i = 0.096,
and the previously published CLAS results [12] (pink trian-
gles), at hQ2i = 1.82 (GeV/c)2, hx

B

i = 0.28.

based models, listed in the caption, are included. Both
the VGG and GK models are based on double distri-
butions [2, 23] to parametrize the (x, ⇠) dependence of
the GPDs, and on Regge phenomenology for their t
dependence. The main di↵erences between these two
models are in the parametrization of the high-t part of
the electromagnetic form factors and in the fact that
the parameters of the GK model are tuned using low-
xB deeply-virtual meson production data from HERA.
KMM12 is a hybrid model designed for global fitting, in
which sea-quark GPDs are represented as infinite sums
of t-channel exchanges; valence quarks are modeled in
terms of these GPDs on the line ⇠ = x. The parameters
of KMM12 were fixed using polarized- and unpolarized-
proton DVCS data from HERMES [13, 24]. The kine-
matic range of applicability of this model is defined by the

relation �t < Q2

4 . The GGL model provides a diquark-
model inspired parametrization of the GPDs that in-
corporates Regge behavior for the t dependence. The
GGL model parameters were obtained by fitting both
DIS structure functions and the recent flavor-separated
nucleon form factor data [25].
While the VGG and GK models are in fair agreement
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Figure 6: Black circles : beam spin asymmetry at � = 90� as a function of �t for di↵erent (Q2, xB)
bins, as measured by the JLab CLAS collaboration [9]. Green triangles are the results extracted
from the Hall A cross sections measurements [7]. The red square is an earlier result from the CLAS
collaboration [11].

proton longitudinally polarized target asymmetry ��UL

�UU
has been measured at fixed xB = 0.35 and

Q2=1.82 GeV2 at three t values by the CLAS collaboration [10] from the eg1 data set (we recall
that this observable is particularly sensitive to Im{H̃}, according to Eq. 13).

1.2 The e1-dvcs experiment and data

The e1-dvcs (E01-113) experiment [12] was the first CLAS experiment dedicated to DVCS. It was
carried out from March to May 2005 with a 5.75 GeV electron beam and a 2.485 cm-long liquid-
hydrogen target. The experimental setup was composed of CLAS and two new elements designed
and built for this experiment:

• an inner calorimeter (IC) located at about 55 cm of the target, at the forward angles, outside
the acceptance of the electromagnetic calorimeter (EC) of CLAS, where most DVCS/BH
photons are emitted (see Figure 7),

• a solenoid magnet installed around the target to shield the detectors, in particular the IC,
from Møller electrons.

In this document, we present an analysis which only considers the case where the
DVCS/BH photon is detected in the IC, discarding the events where it is detected in
the EC.
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FIG. 23. (Color online) t dependence for each Q2-x
B

bin of
the constant term LL of the double-spin asymmetry. The
pink two-dot-dashed curves are the calculations of the DSA
for the Bethe-Heitler process alone. The curves show the pre-
dictions for the full ep� amplitude of four GPD models: i)
VGG [23] (red dashed), ii) KMM12 [26] (cyan dotted), iii)
GK [26] (blue dash-dotted), and iv) GGL [27] (orange dashed-
three-dotted).

=mH). This e↵ect seems stronger at the lowest values of
x
B

, while both CFFs tend to flatten out as x
B

increases.

It is also interesting to compare the results obtained
for the two equal-x

B

bins (Q2 = 1.97 (GeV/c)2 and
Q2 = 2.41 (GeV/c)2): within the limits imposed by the
size of the error bars and by the Q2 lever arm (only 0.44
(GeV/c)2), both sets of CFFs are compatible, at the 1-�
level, which supports the validity of the scaling hypoth-
esis.

In Fig. 25 the values of H
Im

and H̃
Im

that were ob-
tained [37] using the same fitting code with the results
from [15] for the beam-spin asymmetry and from [13] for
the target-spin asymmetry, are also shown. Aside from
the much larger kinematic coverage for the polarized-
target observables made accessible by our data, in the
kinematics where the previous extraction had been at-
tempted, our data improve the precision of =mH̃.
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FIG. 24. (Color online) t dependence for each Q2-x
B

bin of
the cos� term �LL of the double-spin asymmetry. The pink
two-dot-dashed curves are the calculations of the DSA for the
Bethe-Heitler process alone. The curves show the predictions
for the full ep� amplitude of four GPD models: i) VGG [23]
(red dashed), ii) KMM12 [26] (cyan dotted), iii) GK [26] (blue
dash-dotted), and iv) GGL [27] (orange dashed-three-dotted).

IX. CONCLUSIONS

For the first time four-dimensional single-beam, single-
target, and double (beam-target) spin asymmetries for
deeply virtual Compton scattering were extracted over
a large phase space at the same kinematics. This exper-
iment used the CLAS detector in conjunction with the
IC calorimeter and the Hall-B longitudinally polarized
14NH3 target. 165 4-dimensional bins in Q2, x

B

, �t
and �, covering a wide kinematic range (1 < Q2 < 5.2
(GeV/c)2, 0.12 < x

B

< 0.6, 0.08 < �t < 2 (GeV/c)2,
0 < � < 360o) were obtained for the three asymme-
tries, with systematic uncertainties largely below the
statistical uncertainties. The � dependence of the
obtained asymmetries was studied. The dominance
of the leading-order handbag mechanism is supported
by the prevalence, especially at low �t, of the sin�
term over higher sinn� components in both single-spin
asymmetries. The DSA is found to be mostly dominated

Double	Spin	Asymmetry

𝐴JJ =
𝜅JJ +𝜆JJ cos𝜙
1 + 𝛽 cos𝜙
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pink two-dot-dashed curves are the calculations of the DSA
for the Bethe-Heitler process alone. The curves show the pre-
dictions for the full ep� amplitude of four GPD models: i)
VGG [23] (red dashed), ii) KMM12 [26] (cyan dotted), iii)
GK [26] (blue dash-dotted), and iv) GGL [27] (orange dashed-
three-dotted).
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level, which supports the validity of the scaling hypoth-
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that were ob-
tained [37] using the same fitting code with the results
from [15] for the beam-spin asymmetry and from [13] for
the target-spin asymmetry, are also shown. Aside from
the much larger kinematic coverage for the polarized-
target observables made accessible by our data, in the
kinematics where the previous extraction had been at-
tempted, our data improve the precision of =mH̃.
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IX. CONCLUSIONS

For the first time four-dimensional single-beam, single-
target, and double (beam-target) spin asymmetries for
deeply virtual Compton scattering were extracted over
a large phase space at the same kinematics. This exper-
iment used the CLAS detector in conjunction with the
IC calorimeter and the Hall-B longitudinally polarized
14NH3 target. 165 4-dimensional bins in Q2, x

B

, �t
and �, covering a wide kinematic range (1 < Q2 < 5.2
(GeV/c)2, 0.12 < x

B

< 0.6, 0.08 < �t < 2 (GeV/c)2,
0 < � < 360o) were obtained for the three asymme-
tries, with systematic uncertainties largely below the
statistical uncertainties. The � dependence of the
obtained asymmetries was studied. The dominance
of the leading-order handbag mechanism is supported
by the prevalence, especially at low �t, of the sin�
term over higher sinn� components in both single-spin
asymmetries. The DSA is found to be mostly dominated
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H
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by the constant term, which contains both BH and
DVCS/BH interference, although in our kinematics
the BH contribution is the strongest. These data
bring important constraints to GPD parametrizations,
especially for H and H̃. Using one method among the
various ones that are currently in development, these
data allow us to extract the imaginary parts of the H̃
and H Compton Form Factors and to gain insight, via
their relative t slopes, about the spatial distribution
of the electric and axial charges in the proton. The
extraction of the Compton Form Factors will be further
improved once the new CLAS results on DVCS cross
sections will become available [38]. Furthermore, the
extensive DVCS-devoted program planned at Je↵erson
Lab for the 12-GeV era will extend our knowledge of the
Generalized Parton Distributions of the proton in terms
of both kinematical coverage and statistical precision.
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tracted four-fold cross sections as follows:
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In Eq. 1, N
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0
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is the number of ep ! e0p0� events
in the (Q2, x

B

, t,�) bin. The aforementioned exclusiv-
ity cuts do not fully select a pure sample of DVCS+BH
events. We evaluated the contamination from the ep !
e0p0⇡0 channel where one photon of the ⇡0 decay can es-
cape detection, using a combination of ep! e0p0⇡0 mea-
surements and Monte-Carlo simulations. On average,
this contamination is less than 9% and was subtracted
on a bin-by-bin basis. The four-dimensional accep-
tance/e�ciency of the CLAS detector, Acc, for the ep!
e0p0� reaction was determined for each (Q2, x

B

, t,�) bin
by generating more than 200 million DVCS+BH events,
using a realistic Monte-Carlo generator. The events were
processed through the GEANT simulation of the CLAS
detector, and the same reconstruction and analysis codes
that were used for the data. The event generator includes
radiative e↵ects so that Acc also corrects for a part of
the real internal radiative e↵ects. The factor F

rad

cor-
rects, for each (Q2, x

B

, t,�) bin, for the virtual internal
radiative e↵ects and the remainder of the real internal
radiative e↵ects, which can be both calculated theoret-
ically [20]. The product (�Q2�x

B

�t��) corresponds
to the e↵ective hypervolume of each bin. Finally, L

int

is the e↵ective integrated luminosity, corrected for the
data acquisition dead time, which was deduced from the
integrated charge of the beam measured by a Faraday
cup. In addition, we applied a global renormalization
factor of 12.3%, determined from the analysis of the elas-
tic scattering ep ! e0p0, by comparing the experimental
cross section to the well-known theoretical one. This fac-
tor compensates for various kinematic-independent inef-
ficiencies, not well reproduced by the simulations.

Figure 4 shows, for two selected (Q2, x
B

) bins in dif-
ferent parts of the phase space, the �-dependence of the
ep! e0p0� unpolarized cross section and beam-polarized
cross-section di↵erence. The latter of these two observ-
ables is defined as follows:
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where the arrows correspond to beam helicity states +
and �. For each of these (Q2, x

B

) bins, three selected t
bins are shown. In Fig. 4, the black error bars show the
statistical uncertainties of the data [13.9% on the unpo-
larized cross section on average, over the 110 (Q2, x

B

, t)
bins] and the blue bands show the systematic uncertain-
ties [14% on the unpolarized cross section on average].
The contributions to the latter include the uncertain-
ties on the beam energy and therefore the kinematics
and associated corrections (5.7% on average), the accep-
tance correction (5.3%), the global renormalization factor
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FIG. 4. (Color online) Top six plots: unpolarized cross sec-

tion
d

4
�ep!e0p0�

dQ

2
dxBdtd�

(top row) and beam-polarized cross-section

di↵erence �(d4�) for the ep ! e0p0� reaction, as a function
of �, for (Q2, x

B

)=(1.63 GeV2, 0.185) and for 3 �t values:
0.153, 0.262 and 0.447 GeV2. Bottom six plots: same observ-
ables for (Q2, x

B

)=(2.78 GeV2, 0.335) and �t=0.204, 0.262
and 0.448 GeV2. The green long-dashed curves show the BH
contribution only. The other curves correspond to the pre-
dictions of four GPD models: VGG [6, 21, 22] (blue solid
curves), KMS [23] (cyan dash-dotted curves), and two ver-
sions of the KM model [24, 25], KM10 (red dotted curves)
and KM10a (red short-dashed curves). The blue bands show
the systematic uncertainties.

(5%), the exclusivity cuts (3.5%), the radiative correc-
tions (2.2%), the particle selection (1.6%), and the ⇡0

background subtraction (1%).

The unpolarized cross sections peak towards �=0� and
360� due to the BH process for which the final-state pho-
ton is predominantly emitted in the direction of the initial
or scattered electron. This is quantitatively confirmed by
the calculations shown in Fig. 4, where the green curves
show the BH contribution only. The di↵erence between
the BH curves and the data can thus be attributed to the
DVCS process, and therefore linked to GPDs. We dis-
play in Fig. 4 calculations of four GPD models, listed in
the caption. The modeling of the GPDs in the VGG and
KMS models is based on the Double-Distribution repre-
sentation [1, 26, 27]. The VGG calculations in Fig. 4

Absolute	Cross	Section	s and	Ds measurements.

-VGG	 -BH,		..	KM10			KMS

4

tracted four-fold cross sections as follows:

d4�
ep!e

0
p

0
�

dQ2dx
B

dtd�
=

N
ep!e

0
p

0
�

L
int

�Q2�x
B

�t�� Acc F
rad

. (1)

In Eq. 1, N
ep!e

0
p

0
�

is the number of ep ! e0p0� events
in the (Q2, x

B

, t,�) bin. The aforementioned exclusiv-
ity cuts do not fully select a pure sample of DVCS+BH
events. We evaluated the contamination from the ep !
e0p0⇡0 channel where one photon of the ⇡0 decay can es-
cape detection, using a combination of ep! e0p0⇡0 mea-
surements and Monte-Carlo simulations. On average,
this contamination is less than 9% and was subtracted
on a bin-by-bin basis. The four-dimensional accep-
tance/e�ciency of the CLAS detector, Acc, for the ep!
e0p0� reaction was determined for each (Q2, x

B

, t,�) bin
by generating more than 200 million DVCS+BH events,
using a realistic Monte-Carlo generator. The events were
processed through the GEANT simulation of the CLAS
detector, and the same reconstruction and analysis codes
that were used for the data. The event generator includes
radiative e↵ects so that Acc also corrects for a part of
the real internal radiative e↵ects. The factor F

rad

cor-
rects, for each (Q2, x

B

, t,�) bin, for the virtual internal
radiative e↵ects and the remainder of the real internal
radiative e↵ects, which can be both calculated theoret-
ically [20]. The product (�Q2�x

B

�t��) corresponds
to the e↵ective hypervolume of each bin. Finally, L

int

is the e↵ective integrated luminosity, corrected for the
data acquisition dead time, which was deduced from the
integrated charge of the beam measured by a Faraday
cup. In addition, we applied a global renormalization
factor of 12.3%, determined from the analysis of the elas-
tic scattering ep ! e0p0, by comparing the experimental
cross section to the well-known theoretical one. This fac-
tor compensates for various kinematic-independent inef-
ficiencies, not well reproduced by the simulations.

Figure 4 shows, for two selected (Q2, x
B

) bins in dif-
ferent parts of the phase space, the �-dependence of the
ep! e0p0� unpolarized cross section and beam-polarized
cross-section di↵erence. The latter of these two observ-
ables is defined as follows:

�(d4�) =
1

2


d4�!�

ep!e

0
p

0
�

dQ2dx
B

dtd�
� d4 ��

ep!e

0
p

0
�

dQ2dx
B

dtd�

�
, (2)

where the arrows correspond to beam helicity states +
and �. For each of these (Q2, x

B

) bins, three selected t
bins are shown. In Fig. 4, the black error bars show the
statistical uncertainties of the data [13.9% on the unpo-
larized cross section on average, over the 110 (Q2, x

B

, t)
bins] and the blue bands show the systematic uncertain-
ties [14% on the unpolarized cross section on average].
The contributions to the latter include the uncertain-
ties on the beam energy and therefore the kinematics
and associated corrections (5.7% on average), the accep-
tance correction (5.3%), the global renormalization factor
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FIG. 4. (Color online) Top six plots: unpolarized cross sec-

tion
d

4
�ep!e0p0�

dQ

2
dxBdtd�

(top row) and beam-polarized cross-section

di↵erence �(d4�) for the ep ! e0p0� reaction, as a function
of �, for (Q2, x

B

)=(1.63 GeV2, 0.185) and for 3 �t values:
0.153, 0.262 and 0.447 GeV2. Bottom six plots: same observ-
ables for (Q2, x

B

)=(2.78 GeV2, 0.335) and �t=0.204, 0.262
and 0.448 GeV2. The green long-dashed curves show the BH
contribution only. The other curves correspond to the pre-
dictions of four GPD models: VGG [6, 21, 22] (blue solid
curves), KMS [23] (cyan dash-dotted curves), and two ver-
sions of the KM model [24, 25], KM10 (red dotted curves)
and KM10a (red short-dashed curves). The blue bands show
the systematic uncertainties.

(5%), the exclusivity cuts (3.5%), the radiative correc-
tions (2.2%), the particle selection (1.6%), and the ⇡0

background subtraction (1%).

The unpolarized cross sections peak towards �=0� and
360� due to the BH process for which the final-state pho-
ton is predominantly emitted in the direction of the initial
or scattered electron. This is quantitatively confirmed by
the calculations shown in Fig. 4, where the green curves
show the BH contribution only. The di↵erence between
the BH curves and the data can thus be attributed to the
DVCS process, and therefore linked to GPDs. We dis-
play in Fig. 4 calculations of four GPD models, listed in
the caption. The modeling of the GPDs in the VGG and
KMS models is based on the Double-Distribution repre-
sentation [1, 26, 27]. The VGG calculations in Fig. 4
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only include the contribution of the GPD H as the in-
clusion of the other GPDs barely changes the results.
The KM model is based on the Mellin-Barnes represen-
tation [24, 28]. The KM10 version of the model includes
contributions from all four GPDs for which the free pa-
rameters were fitted to the JLab [12, 13], HERMES [29]
and ZEUS/H1 [30, 31] data. In that work, it was found
that it is possible to fit the JLab Hall A unpolarized cross
sections only at the price of the introduction of a very
strong H̃ contribution [32]. The KM10a version is based
on a fit which excludes the JLab Hall A unpolarized cross
sections [12] and sets H̃ to zero. Note that none of these
four models has been tuned to our data.

Figure 4 shows that the predictions of standard GPD
models like VGG, KMS, and KM10a, whose compati-
bility is remarkable in spite of their di↵erent approaches,
are in good agreement with our unpolarized cross-section
data. In contrast, we see that the KM10 version, which
includes the strong H̃ contribution, tends to overestimate
our data. Over our 110 (Q2, x

B

, t) bins, the average �2

value per degree of freedom [33] is 1.91 for VGG, 1.85
for KMS, 1.46 for KM10a, and 3.94 for KM10. We can
therefore conclude that standard GPD models with a
dominant contribution of the GPD H to the unpolarized
cross section, i.e., without the introduction of a strong H̃
contribution, describe the data well. Moreover, the dis-
agreement between our data and the KM10 model, which
instead matches the Hall A results, might reveal an in-
consistency between the two sets of data. As a check,
we performed a dedicated data analysis using the exact
same (Q2, x

B

, t) bin limits as those used for the Hall A
analysis (Q2=2.3 GeV2, x

B

=0.36, and �t =0.17, 0.23,
0.28 and 0.33 GeV2). However, in this limited and par-
ticular (Q2, x

B

, t) region, the comparison is hampered by
our large statistical uncertainties and lack of �-coverage
around � = 180�. Thus no conclusion can be drawn from
this comparison. The Hall A experiment was run at a lu-
minosity almost three orders of magnitude larger than
ours, but in a much more limited phase space.

In general, the four models, including KM10, give a
good description of the beam-polarized cross-section dif-
ference and the data barely allow one to distinguish one
model from another. Over our 110 (Q2, x

B

, t) bins, the
average �2 value per degree of freedom [33] is 1.40 for
VGG, 1.84 for KMS, 1.06 for KM10a, and 1.20 for KM10.

Finally, we attempted to extract directly some GPD
information from these two sets of observables. We used
the local-fitting procedure developed in Refs. [34–37]. At
leading-twist and leading-order, this procedure uses well-
established DVCS amplitudes and does not depend on
model parametrizations of the GPDs. We fit simultane-
ously the �-distributions of our unpolarized and beam-
polarized cross sections at a given (Q2, x

B

, t) kinematic
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FIG. 5. (Color online) Results of the CFF fit of our data
for H

Im

(upper panel) and H
Re

(lower panel), with only the

GPDs H and H̃, for three of our (Q2, x
B

) bins, as a function
of t. The blue solid curves are the predictions of the VGG
model. The black dashed curves show the fit of the results by
the function Aebt.

point by the eight (real) quantities:

F
Re

(⇠, t) = P
Z 1

�1
dx


1

x� ⇠
⌥ 1

x+ ⇠

�
F (x, ⇠, t),

F
Im

(⇠, t) = F (⇠, ⇠, t)⌥ F (�⇠, ⇠, t). (3)

In Eq. 3, F = H, H̃, E, Ẽ, the top and bottom signs apply
to the unpolarized (H,E) and polarized (H̃, Ẽ) GPDs
respectively, and P is the principal value integral. These
quantities are called Compton Form Factors (CFFs) [38]
in Refs. [34–37] and “sub-CFFs” in Ref. [39]. The only
model-dependent input in the procedure is that the CFFs
are allowed to vary in a very conservative limited range,
±5 times the CFFs from the VGG model [22]. In spite of
the underconstrained nature of the problem, i.e., fitting
two observables with eight free parameters, the algorithm
manages in general to find well-defined minimizing values
for H

Im

and H
Re

. The reason is that the two observables
that we fit are dominated by the contribution of the GPD
H.
Ideally, one would like to fit all CFFs. However, with

only two observables in this case, this leads to too large
uncertainties. We therefore present in Figure 5, for a se-
lection of three of our 21 (Q2, x

B

) bins, the t-distribution
of the fitted H

Im

and H
Re

, computed neglecting the con-
tributions associated with E and Ẽ. Fig. 5 also shows the
predictions of the VGG model, which overestimates the
fitted H

Im

at the smallest values of x
B

.
We have fitted, in Fig. 5, the t-dependence of H

Im

by the function Aebt with the normalization A and the
slope b as free parameters. Keeping in mind that the Q2

values are di↵erent for the three x
B

bins, the results of
these fits show that A and b increase, in a systematic way,
with decreasing x

B

. Under the hypothesis of neglecting
Q2 higher-twist and evolution e↵ects as well as deskew-

ing e↵ects [40], these behaviors might reveal tomographic

VGG
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- target	length:		1.5	vs	4	cm
- target	position:		3	cm
- solenoid/target	offset
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XII. COMPARISON WITH PREVIOUS CLAS804

RESULTS805

The results presented in this paper originate from the806

second data taking run of the so-called e1-dvcs exper-807

iment. The results from the first run (e1-dvcs1) were808

already published [FX, Jo]. In addition from being taken809

four years apart, the two runs di↵ered by the beam en-810

ergy (5.88 GeV presently vs 5.75 previously), the exact811

positions of the target and of the inner calorimeter with812

respect to CLAS, as well as the exact kinematics for each813

bin. Still the di↵erences are not so large to prevent a sig-814

nificant comparison and test their compatibility.815

For this purpose, a multiplicative factor was applied816

to the e1-dvcs1 cross sections [Jo] to account for the dif-817

ference in beam energy. This factor originates from the818

known energy dependence of the Bethe-Heitler process819

as well as from the modeled, but lesser, dependence of820

the DVCS process. It is xB , Q2 bin and � dependent,821

in average of the order of 4%, and never exceeds 10%.822

For a global comparison of the cross-section results, we823

calculated, for the 1907 four-dimensional bins where the824

results overlap, cross section di↵erences normalized by825

the combined errors of the two runs:826

�i =
�1i � �2ip

��12i + ��22i
(32)

where for each run the errors in the denominator are the827

quadratic sum of statistical and systematic uncertainties.828

Figure ?? shows the results of the comparison between829

e1-dvcs1 and e1-dvcs2 in terms of these normalized dif-830

ferences. The two data sets are clearly consistent. The831

fact that this distribution is centered nearly at 0 is a832

very good indication that the absolute normalization of833

both data sets is understood. A standard deviation of 1834

indicates that the uncertainties are correctly evaluated.835

FIG. 23. Histogram of error-normalized cross section di↵er-
ences between e1-dvcs1 [Jo] and e1-dvcs2, as defined in Eq. 32.

836

837

XIII. VGG MODEL COMPARISON838

In this section, we compare the experimental cross sec-839

tions with the theoretical calculations from the VGG840

model [? ? ? ? ? ]. This model parametrizes the GPDs841

based on Radyushkin’s double distributions ansatz with842

a few free parameters that are fitted to the nucleon form843

factor data. In the following, the parameters have not844

been tuned to the current data. Only the GPD H con-845

tribution is included and the parameter values are taken846

as: bv and bs (which control the x-⇠ correlation) are both847

equal to 1, and ↵0 (which controls the x-t dependence) is848

equal to 1.1. The spirit of this comparison is to show that849

the cross sections extracted in this work are roughly com-850

FIG. 24. Histogram of error-normalized cross section di↵er-
ences �

i

between e1-dvcs1 [Jo] and e1-dvcs2, as defined in
Eq. 32, with a fit to a Gaussian distribution (solid curve),
which yields a mean of �0.024± 0.026 and a standard devia-
tion of 1.0?± 0.02.

patible with the theoretical expectations. The precise ex-851

traction of CFFs and GPDs requires a detailed and spe-852

cialized fitting procedure, which is beyond the scope of853

this article. We refer the reader to Refs. [? ? ? ? ? ? ?854

? ? ? ? ] for such studies. In Figs. 17-22 we compare the855

results of the VGG model to the unpolarized and the dif-856

ference of beam-polarized cross sections from this work.857

We selected three particular (xB ,Q2) bins: (0.127,1.13),858

(0.186,1.67), (0.333,2.85), which exemplify the low, in-859

termediate, and high (xB ,Q2) domains spanned by the860

current experiment, respectively. For the three (xB ,Q2)861

bins, we show the �-dependence of the cross sections for862

8 or 9 t-bins. We recall that the ep ! e0p0� process is863

considered to be the coherent sum of the DVCS and BH864

contributions. In Figs. 17-19, the red curves show the865

contribution of the BH alone. The blue curves show the866

sum of the BH and DVCS contributions. It is clear that867

the �-dependence of the unpolarized cross sections, which868

peak at � ⇡ 0� are dominated by the BH contribution,869

especially near � = 0� and 360�. Indeed, the BH cross870

section is maximal and quasi-singular when the outgo-871

ing real photon is collinear to the (incoming or outgoing)872

electron. This means that the photon is basically in the873

leptonic plane, i.e. � ⇡ 0�. The BH calculation is very874

well under control: the only non-QED inputs are the nu-875

cleon form factors, which, at the relatively low-t values876

considered here, are well-known. Therefore, the di↵er-877

ences between the data and the red curves correspond878

to the DVCS contribution, which depends on the much879

less known GPDs. For the beam-polarized cross sections,880

µ = 2x 10-2

Dd = 1.0 

Ratio	of	cross	section	differences	and	errors	added	in	quadrature

Major	issue	for	cross	section	measurements	–elastic	normalization
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Fig. 22. Top: Amplitude A of HIm, multiplied by ξ, as a
function of ξ. Bottom: t-slope B of HIm as a function of ξ.
Data points: 8 CFFs fit from CLAS (circles) as extracted in
the present work and from HERMES (square) as extracted in
Refs. [22,9]. The one-parameter fits to these data points ac-
cording to Eqs. (21, 22) are shown by the bands, correspond-
ing to a 1σ variation of aA and aB, whose fit values are given
by Eq. (23). When there are two points for the same ξ-value,
both are included in the fits. The theory curves correspond to
the dual model and to the double distribution (DD) model for
three choices of the valence (sea) profile parameters bv (bs).

For the exponential t-slope B(ξ), both the data as well
as the models follow a ln(1/ξ) behavior, thus leading to an
increase of the slope as ξ decreases. Only for ξ ! 0.5, which
is beyond the reach of the current data, some differences
between the models appear.

We now seek to relate the increasing t-slope B(x) when
x decreases with the variation of the spatial size of the
proton when probing partons with different longitudinal
momentum fraction x. For this purpose, we relate it to
the helicity-averaged transverse charge distribution in the
proton, denoted by ρ, which is obtained through a 2-
dimensional Fourier transform of the FF F1 as [17]:

ρ(b⊥) =

∫

d2∆⊥

(2π)2
e−ib⊥·∆⊥F1(−∆2

⊥). (24)

Here b⊥ denotes the quark position in the plane trans-
verse to the longitudinal momentum of a fast moving pro-
ton, and the conjugate momentum variable ∆⊥ denotes
the momentum transfer towards the proton. The squared
radius of this unpolarized 2-dimensional transverse charge
distribution in the proton is then defined as:

⟨b2⊥⟩ =

∫

d2b⊥b
2
⊥ρ(b⊥). (25)

The squared radius of the proton FF F1, denoted by ⟨r21⟩,
is usually defined through its Taylor expansion:

F1(−∆2
⊥) = 1− ⟨r21⟩∆

2
⊥/6 +O(∆4

⊥), (26)

which allows to readily identify ⟨b2⊥⟩ = 2/3⟨r21⟩. The ex-
perimental extraction of ⟨r21⟩ based on elastic electron-
proton scattering data yields [34]: ⟨r21⟩ = 0.65± 0.01 fm2,
resulting in the empirical value for the squared radius of
the proton’s transverse charge distribution:

⟨b2⊥⟩ = 0.43± 0.01 fm2 = 11.05± 0.26 GeV−2. (27)

Similarly to the FFs, the t variable in the GPDs is the
conjugate variable of the impact parameter. For ξ = 0
(where one identifies t = −∆2

⊥
), one therefore has an im-

pact parameter version of GPDs through a Fourier integral
in tranverse momentum ∆⊥, which for a parton of flavor
q reads as :

ρq(x,b⊥) =

∫

d2∆⊥

(2π)2
e−ib⊥·∆⊥Hq

−(x, 0,−∆⊥
2). (28)

Here Hq
−(x, 0, t) is the so-called non-singlet or valence

GPD combination, defined as:

Hq
−(x, 0, t) ≡ Hq(x, 0, t) +Hq(−x, 0, t), (29)

with 0 ≤ x ≤ 1. At ξ=0, the function ρq(x,b⊥) can then
be interpreted as the number density of quarks of flavor q
with longitudinal momentum fraction x at a given trans-
verse distance b⊥ (relative to the transverse c.m.) in the
proton [17]. Note that the transverse position of the quarks
and their longitudinal momenta are independent variables
which can be determined simultaneously.
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ton, and the conjugate momentum variable ∆⊥ denotes
the momentum transfer towards the proton. The squared
radius of this unpolarized 2-dimensional transverse charge
distribution in the proton is then defined as:
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∫
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The squared radius of the proton FF F1, denoted by ⟨r21⟩,
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⊥) = 1− ⟨r21⟩∆
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⊥), (26)

which allows to readily identify ⟨b2⊥⟩ = 2/3⟨r21⟩. The ex-
perimental extraction of ⟨r21⟩ based on elastic electron-
proton scattering data yields [34]: ⟨r21⟩ = 0.65± 0.01 fm2,
resulting in the empirical value for the squared radius of
the proton’s transverse charge distribution:

⟨b2⊥⟩ = 0.43± 0.01 fm2 = 11.05± 0.26 GeV−2. (27)

Similarly to the FFs, the t variable in the GPDs is the
conjugate variable of the impact parameter. For ξ = 0
(where one identifies t = −∆2

⊥
), one therefore has an im-

pact parameter version of GPDs through a Fourier integral
in tranverse momentum ∆⊥, which for a parton of flavor
q reads as :
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Here Hq
−(x, 0, t) is the so-called non-singlet or valence

GPD combination, defined as:

Hq
−(x, 0, t) ≡ Hq(x, 0, t) +Hq(−x, 0, t), (29)

with 0 ≤ x ≤ 1. At ξ=0, the function ρq(x,b⊥) can then
be interpreted as the number density of quarks of flavor q
with longitudinal momentum fraction x at a given trans-
verse distance b⊥ (relative to the transverse c.m.) in the
proton [17]. Note that the transverse position of the quarks
and their longitudinal momenta are independent variables
which can be determined simultaneously.

2.	Plot	all	fit	points	in	𝐴 &	B vs	𝜉 for	
all	fits	for	all	kinematics.

3.	Fit	all	these	A	&	B with
Where	and	B have	following	
functional	form
HIm 𝜉, 𝑡 = 𝐴 𝜉 𝑒� � t

	𝐴 𝜉 =𝑎�(1 − 𝜉)/	𝜉	

𝐵 𝜉 =𝑎�𝑙𝑛(1/	𝜉)

Data		on	ℋZ� 𝜉, 𝑡 generated	by	
fitting	all	CLAS	and	Hall	A	data.

1.For	each	x and		Q2 bin	fit	𝜉
dependence	BY.
HIm 𝜉, 𝑡 = 𝐴 𝜉 𝑒� � t
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Fig. 24. x-dependence of ⟨b2⊥⟩ for quarks in the proton. The
data points correspond to the results obtained in this work
for B(x), as displayed in Fig. 21. They have been multiplied
by the correction factor B0

−/B in the x-range of the data, as
obtained from the black curve in Fig. 23. The total model un-
certainty originating from the red band for B(x) in Fig. 22,
and from the conversion of B0

− to B (using the black solid
curves in Fig. 23) is shown by the red band. The narrow purple
band shows the empirical result using the logarithmic ansatz
for B0

−(x) of Eqs. (36, 37) with the parameter aB0
−

determined

from the proton Dirac radius.

uncertainties associated to these assumptions are included
in our systematic error bars.

At this stage, we don’t carry out such study for the
axial charge radius because of the quite large error bars
that we obtained for H̃Im (Fig. 20), which make it dif-
ficult to extract a precise t-slope. Qualitatively, we can
nevertheless say that the t-slope is apparently quite flat
for H̃Im. This leads us to say that the axial charge of
the nucleon seems to be very concentrated, at least more
than the electric charge, in the core of the nucleon at the
currently probed ξ values.

Finally, we also provide a sketch of the information
which can be extracted from the CFF HRe of Eq. (2). For
this purpose we analyze this CFF using a fixed-t once-
subtracted dispersion relation, which can be written as:

HRe(ξ, t) = −∆(t) + P

∫ 1

0
dxH+(x, x, t)C

+(x, ξ),(38)

where ∆(t) is the subtraction constant, which is directly
related to the D-term form factor, see Ref. [9] for details.
One notices that the dispersive term, corresponding to
the second term on the rhs of Eq. (38), is in principle
calculable provided one has empirical information on the
CFF HIm over the whole x-range.

Fig. 25. Top panel: three-dimensional representation of the
function of Eq. (33) fitted to the data of Fig. 24, showing the
x-dependence of the proton’s transverse charge radius. Bottom
panel: artistic illustration of the corresponding rising quark
density and transverse extent as a function of x.

To illustrate the power of the dispersion relation, we
show an analysis in Fig. 26 showing the CFFs HIm (top
panels) and the CFFs HRe for three values of −t for which
CLAS data exist. We also show in the top panels two DD
GPD parameterizations which give a good description of
the CFF HRe data in the ξ-range of the CLAS data, but
differ in the ξ > 0.3 region, where no data exist at present.
The GPD parameterization we use exactly satisfies a sub-
tracted dispersion relation, and for the purpose of illus-
tration we set the a-priori-unknown subtraction constant
∆(t) equal to zero. The corresponding dispersive results
(second term of Eq. (38)) are shown on the bottom panel
of Fig. 26. We notice the importance of a large cover-
age in x when performing the dispersion integral, because
although the two GPD parameterizations are practically
coinciding for HIm in the ξ-range of the data, they show
a difference for HRe in the same ξ-range, which is due to
their differences in the large ξ region for HIm. We com-
pare our dispersive results for HRe with the direct extrac-
tion of the CFF HRe as performed in this work. Although
the current error bars on the direct extraction of HRe are
large due to systematics, we can observe that apart from
the lowest bin in −t, the trend of the ξ dependence which
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𝐵	→	 𝑏��

Relate	B to	the	number	
density	of	quarks	of	quarks
with	longitudinal	momentum
fraction	x at	a	given	
transverse	distance	𝑏�



Summary and Outlook

Transverse Imaging, Energy Momentum Tensor

First Generation Experiments Published

Entering the 12 GeV and High Precision era

50 100 150 200 250 300

1

2 = 1.39 GeV2 = 0.15 , QBx
2-t = 0.11 GeV

50 100 150 200 250 300
1−10

1

2 = 1.39 GeV2 = 0.15 , QBx

2-t = 0.20 GeV

50 100 150 200 250 300

1

2 = 1.39 GeV2 = 0.15 , QBx
2-t = 0.15 GeV

50 100 150 200 250 300
1−10

1

2 = 1.39 GeV2 = 0.15 , QBx

2-t = 0.26 GeV

)° (φ

)4
 (n

b/
G

eV
σ4 d

FX Girod
JLab

Unraveling the Confinement Forces with CLAS Mar 29th 2017 27/ 27

See	F-X	Girod talk	in		March	2017	Collaboration	meeting	

Outlook	for	CLAS	12:	



Next	step	– publish	DVCS2	data

Run	experiments	at	12	GeV	during	first	run	period


