
Jason Bono, Fermilab

CLAS Collaboration Meeting

Fall, 2017

Ξ - Polarization

- First time measurements for three orthogonal polarization observables
 - Induced polarization, P
 - Transferred polarization, $C_x \& C_z$

Cascades: Under-Explored

- From an S=0 state, cascades, with S=-2, must be produced indirectly
 - Low production cross sections
 - Minimal progress on cascades, experimentally and theoretically
 - Unknown production mechanism
 - Unknown resonance spectrum: most of those predicted are unobserved
- Polarization is sensitive to the production mechanism

Ξ photoproduction

Only one differential cross section measurement, L. Guo et al.

- Measured $\delta\sigma/\delta\theta_{CM}$ and found that Ξ is produced backward
 - Indicative of t-channel

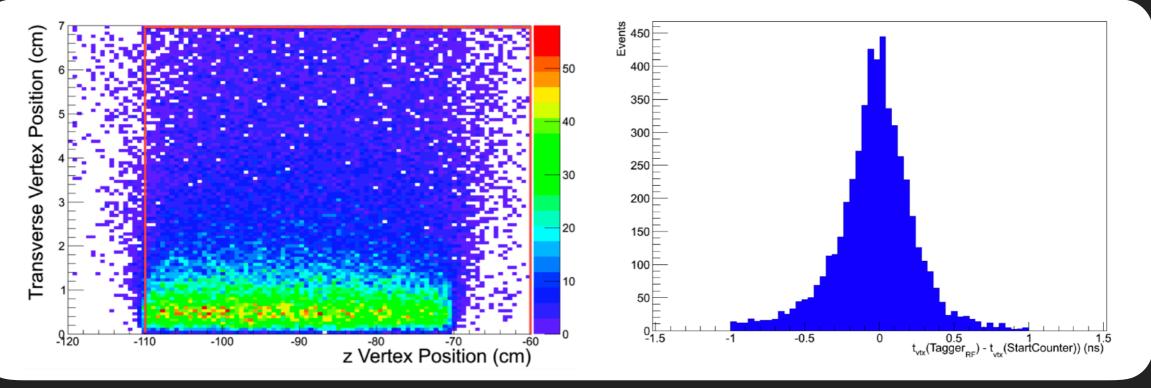
Only one existing theoretical model, K. Nakayama et al.

- Production proceeds through the excitation of S=-1 hyperons
- Relativistic meson exchange, amplitudes calculated in the tree-level approximation from effective Lagrangians
- Reproduced the L. Guo's $\delta\sigma/\delta\theta_{CM}$

G12 Data, Collected In 2008

- Circularly polarized photons on an unpolarized 40 cm *e*H2 target
- ▶ E_e ~5.7 GeV
 - Events with E_γ up to 5.4 GeV
- Most data collected with longitudinal polarization of $P_e \sim 70\%$
 - Most data collected with circular polarization, $0.4 < P_{\gamma} < 0.6$
 - $P_{\gamma} \rightarrow 0$ as $E_{\gamma} \rightarrow 0$; $P_{\gamma} \rightarrow P_{e}$ as $E_{\gamma} \rightarrow E_{e}$
- Electron helicity flipped at 30 Hz
 - Photon helicity flipped at 30 Hz
- L = 68 pb-1
 - <u>2.6 billion triggers</u>

CLAS Analysis Note: *g12* analysis procedures, statistics and systematics, 2017. Jason Bono, <u>jbono@fnal.gov</u>

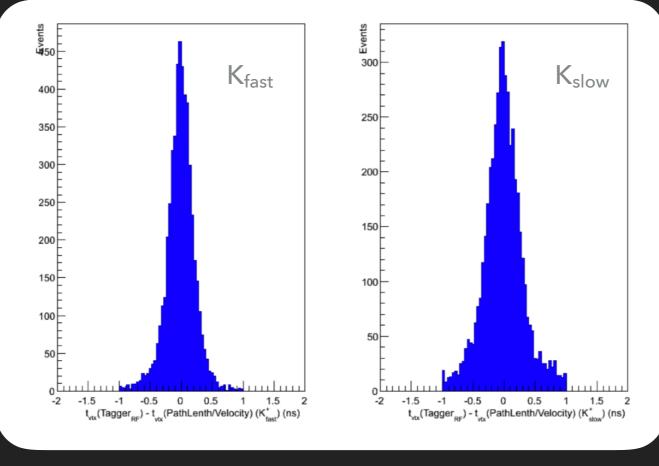

- First time opportunity to study Ξ polarization in

Outline Of Signal Extraction

- Detect Ξ⁻ production- and decay-products
 - 2 Kaons carry S=2: simplest production byproducts that conserve flavor
 - $\Xi^{-} \rightarrow \pi^{-} \Lambda$: Branching ratio ~ 99.98%
 - Require detection of $K^+ K^+ \pi^-$ in the final state
 - Kinematically require missing Ξ^{-} and Λ
- Rarify signal with vertex and timing cuts
- Other filters, such as "fiducial cuts," were used to estimate certain systematics
- Out of the 2.6B events, 5143 $\Xi^- \rightarrow \pi^-(\Lambda)$ were identified

Vertex Cuts

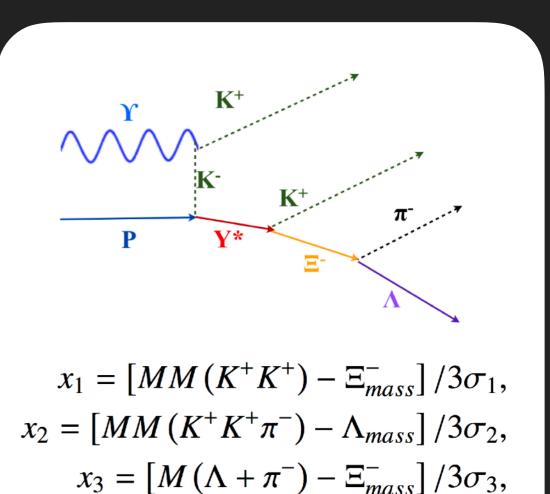
- Allow for detached vertex from the ~160 ps Ext{ lifetime
 - The exact shape is unimportant, as few events > 1cm outside of the target geometry survive mass cuts
 - Contamination of background events into the signal is evaluated later, and taken into account
- Tagged photon time and start counter required to agree to within 1 ns



Shown without kinematic cuts

Shown with kinematic cuts

Kaon Timing Cuts

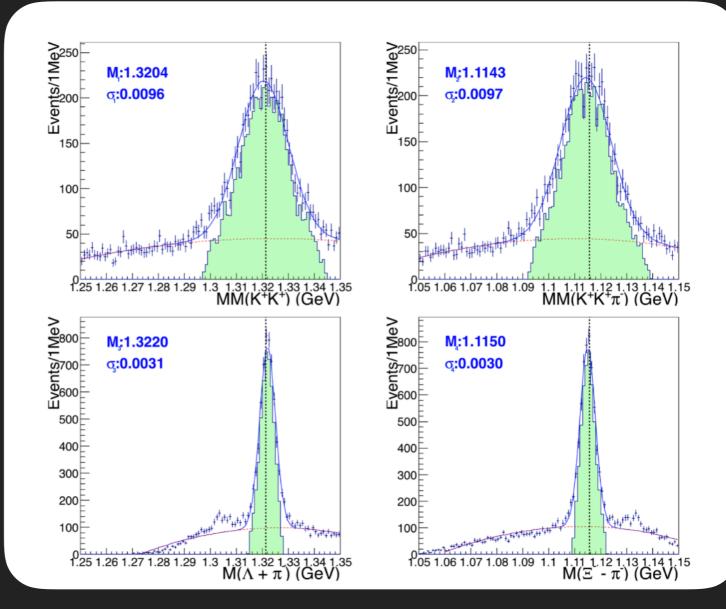

Imposed a 1 ns agreement between tagger's vertex-time and the TOF's vertex time for each kaon

Shown with kinematic cuts

Hypersphere Cuts

- Two constraints on Ξ^{-}
- Two constraints on Λ
- Each quantity scaled by it's 3σ width
- Treated as orthogonal displacements in a 4D space
- Cut on the hypersphere radius
 - R < 1 is essentially a 3σ cut for all quantities

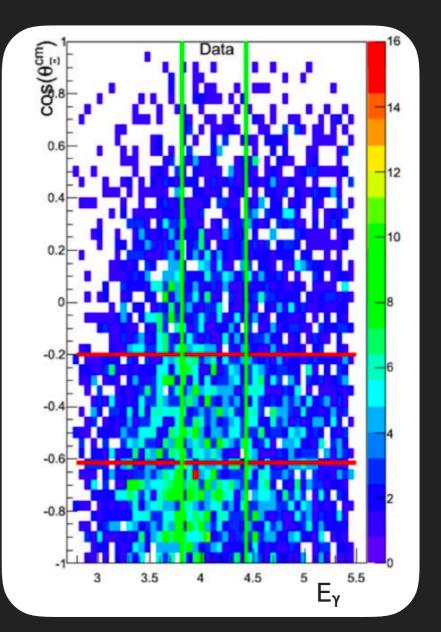
 $x_4 = [M(\Xi^- - \pi^-) - \Lambda_{mass}]/3\sigma_4,$


 $r = \sqrt{x_1^2 + x_2^2 + x_3^2 + x_4^2},$

Increased signal-to-background from "rectangular cuts"

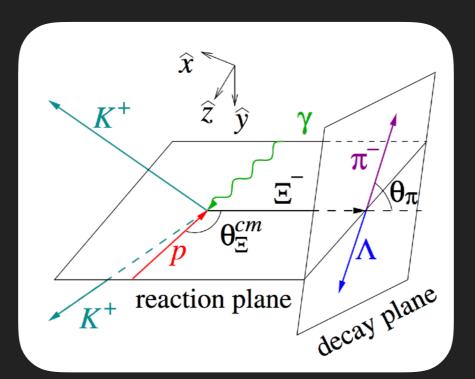
Jason Bono, jbono@fnal.gov

Hypersphere Cuts


- Vertical lines: known mass of Ξ^{-} and Λ
- Blue points: before mass cuts
- Blue line: Gaussian + Polynomial fit
- Red line: extrapolation of polynomial fit
- Green bars: after R < 1 hypersphere cuts

5143 $\Xi^- \rightarrow \pi^- \Lambda$ events

Binning


- Events binned in CM Ξ angle and beam energy
 - Equal statistics
 - ► 3x3 bins for P
 - 3 + 3 bins for $C_x \& C_z$

Binning scheme

Quantization Axes

- ▶ Parity is conserved in Ξ production
 - Polarization must transfer along a vector.
 - Induced polarization must point along an axial vector
- Quantization axes defined in the Ξ rest frame
 - $\mathbf{z} = \mathbf{\gamma} \rightarrow \text{vector} \rightarrow \text{transferred polarization } C_z$
 - $\mathbf{y} = \mathbf{\gamma} \times \mathbf{K} \rightarrow \text{axial vector} \rightarrow \text{induced polarization P}$
 - $\mathbf{x} = \mathbf{y} \times \mathbf{z} \rightarrow \text{vector} \rightarrow \text{transferred polarization } C_x$

Parity Violating Weak Decay

For P:

•
$$n(\theta^y_\pi) = \frac{N}{2}(1 - P\alpha\cos\theta^y_\pi)$$

• Acceptance is symmetric in $\cos \theta_{\pi}^{y}$ about zero.

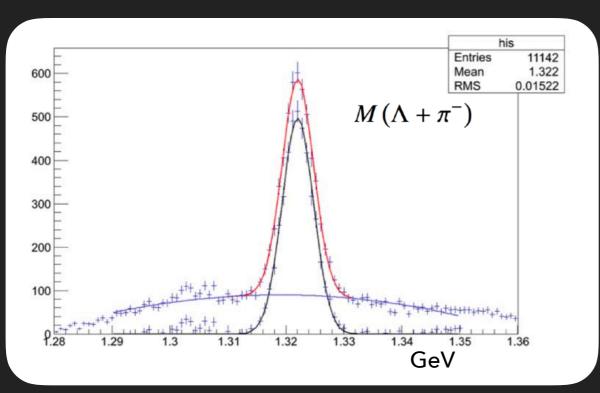
$$\rightarrow \boxed{P = -\frac{2A_y}{\alpha}}$$

Forward-backward π^- asymmetry

For Cx and Cz:

•
$$n(\theta_{\pi}^{x,z}) = \frac{N}{2}(1 - C_{x,z}\alpha\cos\theta_{\pi}^{x,z}).$$

- 30Hz photon helicity flipping.
- Acceptance independent of photon helicity.

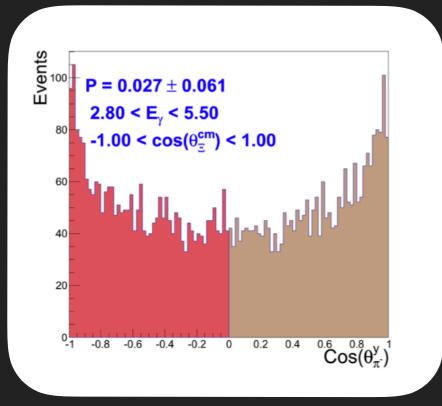

$$\rightarrow A(\theta_{\pi}^{x,z}) = -C_{x,z}|P_{\odot}|\alpha \cos(\theta_{\pi}^{x,z})$$

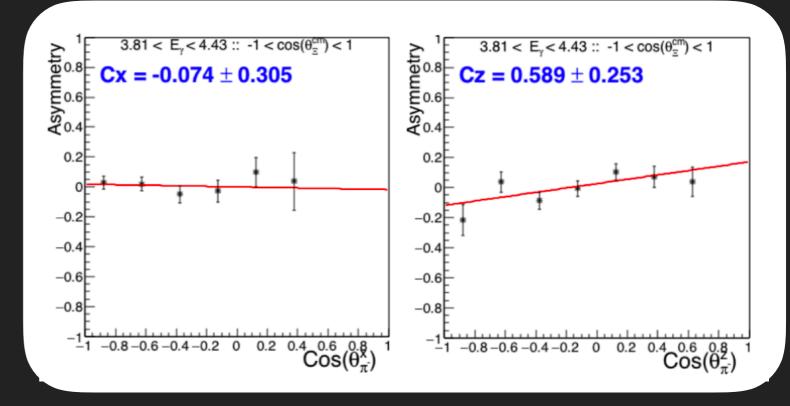
Fit the photon helicity asymmetry.

$$A = \frac{N^+ - N^-}{N^+ + N^-}$$

Dilution Factor

- BG contamination was evaluated in each bin
 - N_{BG} = normalized difference in yield between number of events from hypersphere cuts and yield from a BG subtracted fit
- BG events were found to posses zero effective polarization
 - A simple correction factor, $\mathcal{D} = 1 N_{BG}/N_{total}$ can be applied in each bin


 - $P_{corrected} = P/\mathscr{D}$


E_{γ} (GeV)	$\cos heta_{\Xi}^{C.M.}$	\mathcal{D}	$\delta \mathcal{D}$
3.47	$-1 \le \cos \theta^{C.M.}_{\Xi} \le 1$	0.8975	0.0076
4.09	$-1 \le \cos \theta_{\Xi}^{\overline{C}.M.} \le 1$	0.8858	0.0081
4.88	$-1 \le \cos \theta_{\Xi}^{\overline{C}.M.} \le 1$	0.8418	0.0094
$2.8 \le E_{\gamma} \le 5.5$	-0.79	0.8736	0.0085
$2.8 \le E_{\gamma} \le 5.5$	-0.41	0.8797	0.0083
$2.8 \le E_{\gamma} \le 5.5$	0.19	0.8695	0.0085
3.47	-0.79	0.8820	0.0143
4.09	-0.79	0.9140	0.0122
4.88	-0.79	0.8272	0.0169
3.47	-0.41	0.9102	0.01251
4.09	-0.41	0.8795	0.0149
4.88	-0.41	0.8477	0.0160
3.47	0.19	0.9008	0.0129
4.09	0.19	0.8647	0.0152
4.88	0.19	0.8513	0.0158

Jason Bono, jbono@fnal.gov

Example Extractions

Example extraction of P

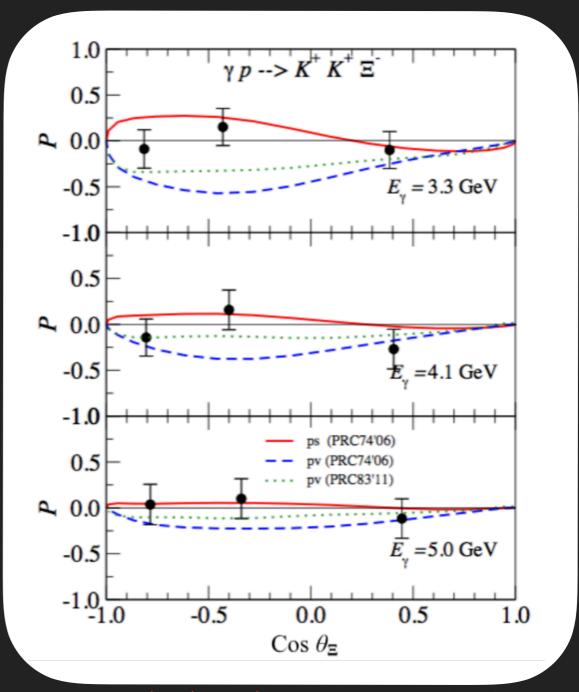
Example extraction of C_{x/z}

Systematics

- Signal contamination (dilution factor)
- Fiducial region of the detector
- Uncertainty in photon polarization
- Uncertainty in the E analyzing power

Final results dominated by statistical uncertainty

Tabulated Results

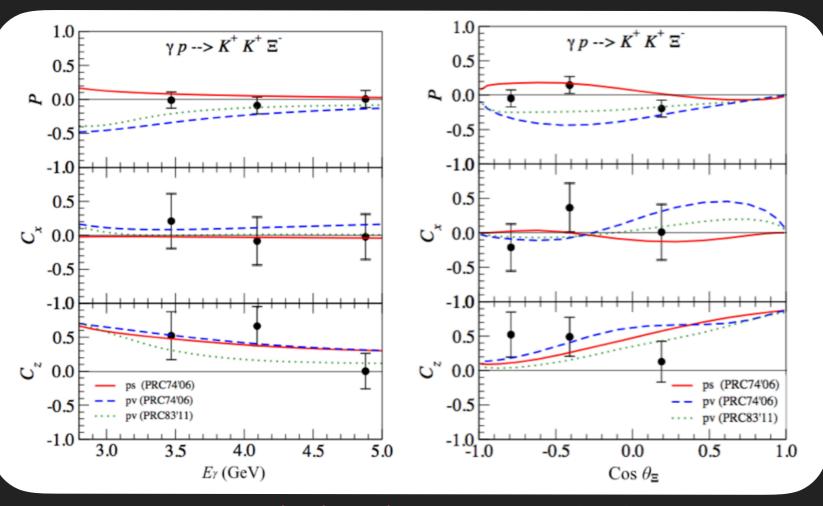

$\mathbf{F}_{\mathbf{A}}(\mathbf{C},\mathbf{M})$	0	D	c D	s D	<u> </u>	<u> </u>
E_{γ} (GeV)	$\cos \theta_{\Xi}$	Р	$\delta_{stat}P$	$\delta_{sys}P$	$\delta_{total}P$	$\delta_{\rm scl} P/P$
3.47	-1 to 1	-0.011	0.118	0.022	0.120	0.026
4.09	-1 to 1	-0.089	0.121	0.022	0.123	0.026
4.88	-1 to 1	0.006	0.125	0.022	0.127	0.026
2.8 to 5.5	-0.79	-0.045	0.122	0.022	0.124	0.026
2.8 to 5.5	-0.41	0.148	0.122	0.022	0.124	0.026
2.8 to 5.5	0.19	-0.193	0.121	0.022	0.123	0.026
3.47	-0.79	-0.088	0.208	0.022	0.210	0.026
4.09	-0.79	-0.143	0.201	0.022	0.203	0.026
4.88	-0.79	0.036	0.220	0.022	0.221	0.026
3.47	-0.41	0.152	0.201	0.022	0.202	0.026
4.09	-0.41	0.158	0.215	0.022	0.216	0.026
4.88	-0.41	0.100	0.216	0.022	0.217	0.026
3.47	0.19	-0.100	0.201	0.022	0.202	0.026
4.09	0.19	-0.269	0.213	0.022	0.214	0.026
4.88	0.19	-0.116	0.214	0.022	0.215	0.026

E_{γ} (GeV)	$\cos \theta_{\Xi}$	C_x	$\delta_{stat}C$	$\delta_{sys}C$	$\delta_{total}C$	$\delta_{scl}C/C$
3.47	-1 to 1	0.209	0.394	0.114	0.410	0.039
4.09	-1 to 1	-0.083	0.344	0.114	0.362	0.039
4.88	-1 to 1	-0.021	0.323	0.114	0.343	0.039
2.8 to 5.5	-0.79	-0.210	0.332	0.114	0.351	0.039
2.8 to 5.5	-0.41	0.367	0.346	0.114	0.364	0.039
2.8 to 5.5	0.19	0.012	0.396	0.114	0.412	0.039
E_{γ} (GeV)	$\cos \theta_{\Xi}$	C_z	$\delta_{stat}C$	$\delta_{sys}C$	$\delta_{total}C$	$\delta_{scl}C/C$
3.47	-1 to 1	0.524	0.349	0.053	0.353	0.039
4.09	-1 to 1	0.665	0.286	0.053	0.291	0.039
4.88	-1 to 1	0.001	0.258	0.053	0.263	0.039
2.8 to 5.5	-0.79	0.522	0.323	0.053	0.327	0.039
2.8 to 5.5	-0.41	0.490	0.280	0.053	0.285	0.039
2.8 to 5.5	0.19	0.129	0.296	0.053	0.300	0.039

Calculation of systematic error to change

P in 3x3 Bins

- All bins consistent with P=0
- General agreement with model
- Can not distinguish variants

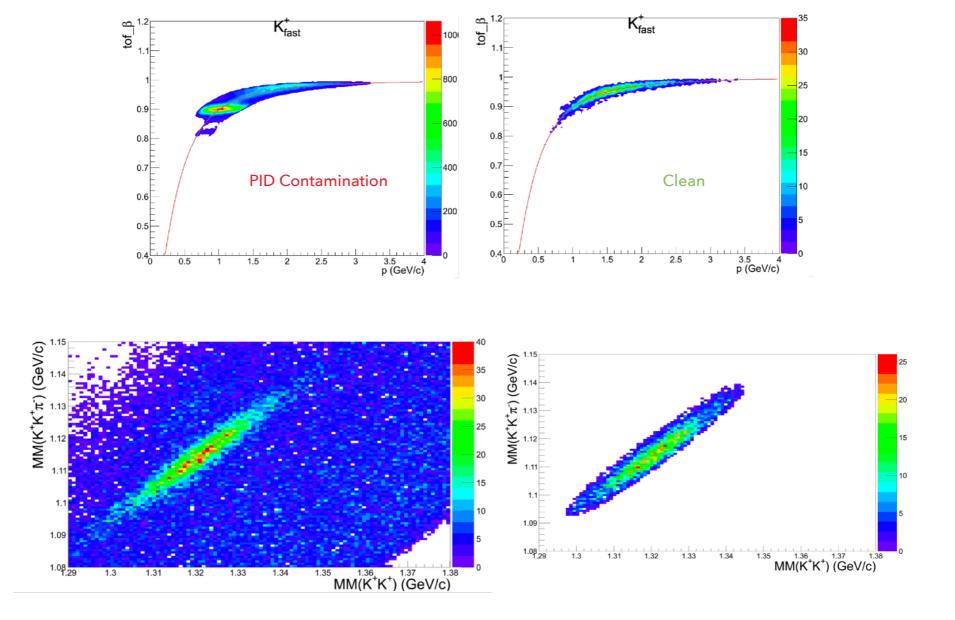


ps 06: Pseudoscalar coupling, resonances up to $\Lambda(1890)$ pv 06: Pseudovector coupling, resonances up to $\Lambda(1890)$ pv 11: Pseudovector coupling, resonances up to $\Sigma(2030)$

P, Cx, and Cz in 3+3 Bins

- All bins consistent with P=0, Cx=0
- Non-zero Cz
- General agreement with model
- Can not distinguish variants

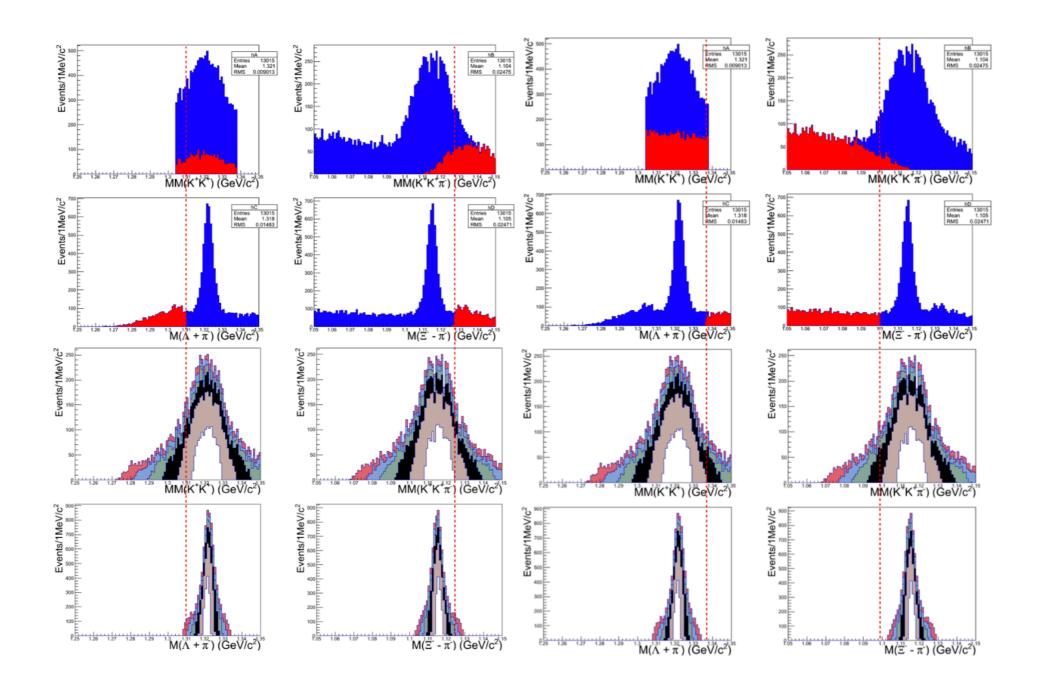
Total integrated polarization = 0.3 ± 0.15


ps 06: Pseudoscalar coupling, resonances up to $\Lambda(1890)$ pv 06: Pseudovector coupling, resonances up to $\Lambda(1890)$ pv 11: Pseudovector coupling, resonances up to $\Sigma(2030)$

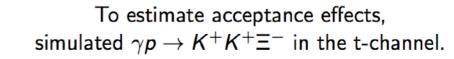
Jason Bono, jbono@fnal.gov

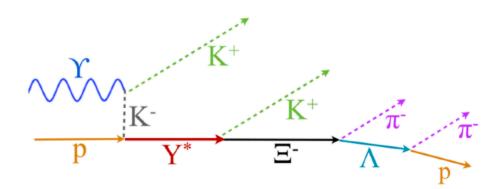
 $\gamma p \rightarrow K^+ K^+ \Xi^-$

- First polarization measurements for photoproduced Ξ⁻
 - $P, C_x \text{ and } C_z$
- > Total integrated polarization departs from zero by 2σ
 - $R = 0.3 \pm 0.15$
- Results generally agree with K. Nakayama's model
 - Where Ξ production proceeds via hyperon resonances that are produced, predominantly in the *t*-channel, via relativistic meson exchange
- Statistical uncertainty prevents distinguishing the model variants
 - Can't determine the exact role of higher spin/mass hyperon resonance
 - CLAS12 & GlueX!
- We've made a first step toward a detailed understanding of Ξ⁻ photoproduction


Effect of Cuts

Before Cuts


After Cuts

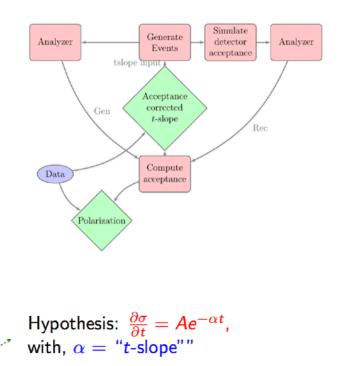

Lambda-pion and mixed background

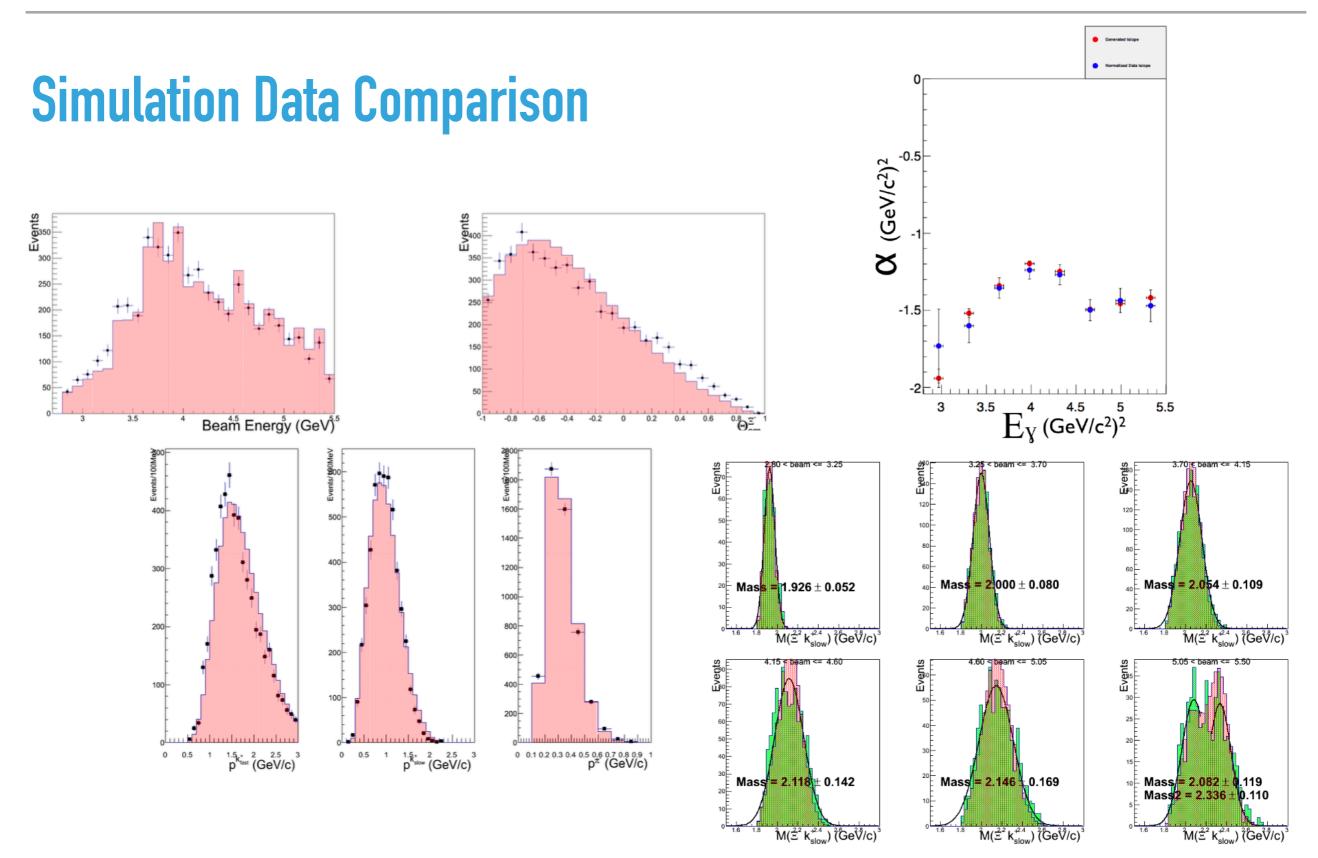
BACKUP

Simulation Generation

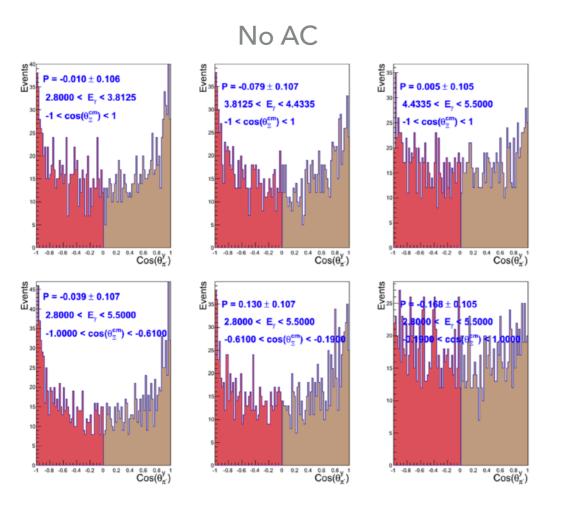
Generated events (gen)

- Pseudorandom four-vectors.
- Weighting (tuning) from data.
- No acceptance or cuts.

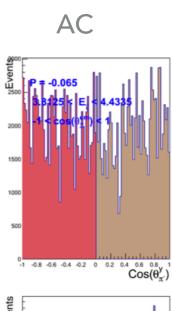

Reconstructed events (rec)

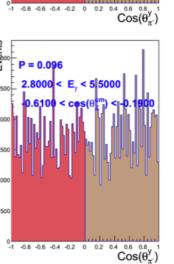

- Events processed through software simulating CLAS.
- Similar cuts to data.
- Acceptance = rec/gen.

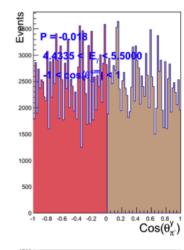
Tuning parameters included:

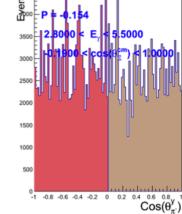

- Resonance mass and width
- Beam energy spectrum
- Exponential *t*-slope

 $t = (p_1 - p_3)^2 = (p_2 - p_4)^2$




Acceptance Corrections from Simulation





 0 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 $Cos(\theta_{\pi}^{y})$

26