Beam spin asymmetries from hard exclusive π^+ electroproduction

David Riser

University of Connecticut

October 5, 2017

Physics motivation

Hard exclusive π^+ electroproduction

Near backward Small u Large t

Hard exclusive π^+ electroproduction

$$BSA = \frac{\sigma^{+} - \sigma^{-}}{\sigma^{+} + \sigma^{-}} \propto \frac{\sigma_{LT'}}{\sigma_{T} + \epsilon_{L} \sigma_{L}} \sin \varphi = A_{LU}^{\sin \varphi} \sin \varphi$$

E1F-Run

- 5.498 GeV electron beam with ~ 75% polarization
- Unpolarized liquid hydrogen target
- Torus magnetic field reduced to 60%
- Approximately 2 billion trigger events

Electron identification

π^+ Particle identification

- β is calculated with timing and path length
- 70 vertical slices fit with gaussian
- 3σ cut at low momenta
- Cut tapers in high momenta

P_t vs z for $ep \rightarrow e\pi^+ X$

 $W\in[2.6,\,3.5]$

P_t vs z for $ep \rightarrow e\pi^+ n$

 $W \in [2.0,\,2.3]$

0.6

0.8

0.2

0.4

10⁻¹

$\cos\theta$ vs z for $ep \rightarrow e\pi^+ n$

BSA for $ep \rightarrow e\pi^+ n$

$A_{LU}^{\sin \varphi}$ for ep \rightarrow e π^+ n

Summary

- Measured beam spin asymmetries from near forward to near backward for hard exclusive π^+ electroproduction using E1F data.
- Showed 10% asymmetries in forward angles, and -10% in backward angles.
- Observed the sign change around 90 degree.
- Working on radiative corrections using "EXCLURAD".
- Working on detailed systematic error studies.
- Will make the same measurements for π^+ , π^0 and two pion $(\pi^-\Delta^{++})$ channels with CLAS12.
- Analysis note is under preparation and will be submitted to PRD rapid communications.