X(3872), XEFT, and PANDA

Thomas Mehen Duke U.

Hadronic Physics with Lepton and Hadron Beams, Jefferson Lab September 7, 2017

Exotic Charmonia

conventional onia?

tetraquarks?

hybrids?

hadronic molecules?

Exotic Charmonia

S. Olsen, **PoS Bormio** 050 (2015)

X(3872)

Decays:
$$X(3872) \rightarrow J/\psi\pi^{+}\pi^{-}$$
 $X(3872) \rightarrow J/\psi\pi^{+}\pi^{-}\pi^{0}$
 $\rightarrow D^{0}\bar{D}^{0}\pi^{0} \rightarrow J/\psi\gamma$ (C=1)
 $T_{X} < 1.2 \,\mathrm{MeV} \rightarrow D^{0}\bar{D}^{0}\gamma \rightarrow \psi(2S)\gamma$

angular distributions in
$$J/\psi\pi^+\pi^-$$
 require $J^{PC} = 1^{++}$

LHCb, PRL 110 (2013) 222001 arXiv:1302.6269 [hep-ex]

S-wave coupling to $D\bar{D}^* + \bar{D}D^*$

 $\frac{Br[X(3872) \to J/\psi\pi^+\pi^-\pi^0]}{Br[X(3872) \to J/\psi\pi^+\pi^-]} = 0.8 \pm 0.3 \qquad \begin{array}{l} \mathsf{X(3872) is mixed state} \\ \mathsf{w/I=0 and I=I?} \end{array}$

Extremely Close to Threshold:

$$m_X = 3871.69 \pm 0.17 \,\mathrm{MeV}$$

 $m_{D^0} = 1864.84 \pm 0.05 \,\mathrm{MeV}$
 $m_{D^{*0}} = 2006.85 \pm 0.05 \,\mathrm{MeV}$ (from PDG)

 $m_X - (m_{D^0} + m_{D^{*0}}) = 0.0 \pm 0.18 \,\mathrm{MeV}$

unique among proposed molecules:

Universality:
$$\psi_{DD^*}(r) \propto \frac{e^{-r/a}}{r}$$
 $a \ge 10.6 \, \text{fm}$ $B.E. = \frac{1}{2\mu_{DD^*}a^2}$

Long distance physics of X(3872) calculable in terms of scattering length, known properties of D mesons - Effective Range Theory (ERT) (M. B. Voloshin, E. Braaten, et. al.)

Conventional Behavior of X(3872) I

$$\frac{Br[X(3872) \to \psi'\gamma]}{Br[X(3872) \to J/\psi\gamma]} = 2.46 \pm 0.70$$

Naturally expected for χ'_{c1}

Molecular Model: **3.8 10-3** Swanson, Phy. Rep. **429** (2006) 243-305

XEFT, EFT: depends on counterterms, sensitive to short-distance structure of X(3872)

T.M., R.P. Springer, PR **D83** (2011) 094009 Guo, F.-K., et. al., PL **B742** (2015) 394-398

Conventional Behavior of X(3872) II

High p⊤ production in heavy ion collisions, hadron colliders

C. Bignamini, et. al., PRL **103** (2009)162001,PL **B684** (22010) 228-230 P. Artoisenet, E. Braaten, et. al., PRD**81** (2010) 114018, PRD **83** (2011) 014019

Mixed Charmonium-Molecule

M. Suzuki, PRD 72 (2005) 114013

Production at colliders M. Butenschoen, et. al., PR **D88** (2013) 011501

 $|X\rangle = \sqrt{Z_{c\bar{c}}} |\chi_{c1}(2P)\rangle + \sqrt{Z_{mo1}} |DD^*\rangle \qquad Z_{c\bar{c}} = (28 - 44)\%.$

X(3872) on Lattice M. Padmanath, et. al., PR **D92** (2015) 034501 $c\bar{c}, D\bar{D}^*$ operators both required to obtain X(3872)

QCD sum rules analysis of mass, decays R. Matheus, et. al., PR D80 (2009) 056002 $Z_{c\bar{c}}\sim 0.97,~~Z_{
m mol}\sim 0.03$

Diquark-Diquark Bound States

A. Esposito, A. Pilloni, A.D.Polosa, Phys. Rep. 668 (2016) 1-97

A. Esposito, et. al., Int. J. Mod. Phys. A30 (2015) 1530002

X(3872) at PANDA

simulated resonance scan: $p\bar{p} \rightarrow X(3872) \rightarrow J/\psi \pi^+\pi^-$

Narrow Resonances

$$\sigma_{BW}(\sqrt{s}) = \frac{(2J+1) \cdot 4\pi}{\sqrt{s^2 - 4m_p^2}} \cdot \frac{BR(X(3872) \to p\overline{p}) \cdot \Gamma_{X(3872)}^2}{4(\sqrt{s} - m_{X(3872)})^2 + \Gamma_{X(3872)}^2}.$$

M.Galuska et. al., POS(Bormio2012) 018

Line shapes near threshold E. Braaten, PRD 77 (2008) 034019

near threshold S-wave resonances, shallow bound states will modify near threshold cross section

$$\times |f(E)|^2 \qquad f(E) = \frac{1}{-1/a + \sqrt{-2ME - i\epsilon}}$$

zero-range, single channel model

X(3872) Production at PANDA

G.Y.Chen, J.P. Ma, PRD 77 (2008) 097501

 $\Gamma_X = 2.3 \,\mathrm{MeV}$

Line shapes depend on channel

LO - reproduce ERT prediction for $X(3872) \rightarrow D^0 \bar{D}^0 \pi^0$

M.B. Voloshin, PLB 579: 316 (2004)

$$\frac{d\Gamma_{\rm LO}}{dp_D^2 dp_{\bar{D}}^2} = \frac{g^2}{32\pi^3 f_\pi^2} 2\pi\gamma (\vec{p}_\pi \cdot \vec{\epsilon}_X)^2 \left[\frac{1}{p_D^2 + \gamma^2} + \frac{1}{p_{\bar{D}}^2 + \gamma^2}\right]^2$$

NLO - range corrections, non-analytic corr. from π^0 exchange

Wavefunction Renormalization

Agrees well with calculation with nonperturbative pions

Baru, et. al., PRD84:074029 (2011)

Bound on width of the X(3872)

TM,Phys.Rev. D92 (2015) no.3, 034019 arXiv:1503.02719

Zero binding energy: $\Gamma[X(3872) \rightarrow D^0 \overline{D}^0 \pi^0] = \Gamma[D^{*0} \rightarrow D^0 \pi^0]$ = 36 keV

XEFT + BE < 0.33 MeV:

 $28 \,\mathrm{MeV} < \Gamma[X(3872) \to D^0 \bar{D}^0 \pi^0] < 42 \,\mathrm{MeV}$

PDG: $\frac{\Gamma[X(3872) \to D^0 \bar{D}^0 \pi^0]}{\Gamma[X(3872)]} > 32\%$

Bound on total width:

 $\Gamma[X(3872)] < 131 \,\mathrm{keV}$

Why is $X(3872) \rightarrow \chi_{cJ} \pi^0$ interesting?

Heavy Quark Spin Symmetry (HQSS) predicts relative rates

$$\Gamma_J \equiv \Gamma[X(3872) \to \chi_{cJ} \pi^0]$$

charmonium $\chi_{c1}(2^3P_1)$

 $\Gamma_0: \Gamma_1: \Gamma_2:: 3p_\pi^3: 5p_\pi^3: 0 \approx 1: 2.70: 0$

molecule

 $\Gamma_0: \Gamma_1: \Gamma_2:: 4p_\pi^3: 3p_\pi^3: 5p_\pi^3 \approx 2.88: 0.97: 1$

S. Dubynskiy, M.B. Voloshin, PRD 77, 014013 (2008)

Calculating $X(3872) \rightarrow \chi_{cJ}\pi^0$ in **XEFT**

Coupling χ_{cJ} to D mesons, heavy quark spin symmetry

P. Colangelo, F. De Fazio, T. Pham, PRD69 (2004) 054023

contact interactions w/ onia, D mesons, pions (not shown)

Hadronic Loops

Nonrelativistic Power counting: loops ~ v⁵, propagators ~ v⁻², diagrams $\frac{p_{\pi}}{v}$

loops with contact interaction v² suppressed

Prediction

TM,Phys.Rev. D92 (2015) no.3, 034019 arXiv:1503.02719

$$\Gamma[X(3872) \to \chi_{c0}\pi^{0}] = \frac{2g^{2}g_{1}^{2}}{9\pi^{2}f_{\pi}^{2}}\gamma_{n}\mu_{DD^{*}}^{2}\frac{m_{\chi_{c0}}}{m_{X(3872)}}p_{\pi}^{3}F_{0}[\gamma_{n},\Delta_{0},E_{\pi}]^{2} = 3.8 \text{ MeV}$$

$$\Gamma[X(3872) \to \chi_{c1}\pi^{0}] = \frac{g^{2}g_{1}^{2}}{6\pi^{2}f_{\pi}^{2}}\gamma_{n}\mu_{DD^{*}}^{2}\frac{m_{\chi_{c1}}}{m_{X(3872)}}p_{\pi}^{3}F_{1}[\gamma_{n},\Delta_{0},E_{\pi}]^{2} = 1.4 \text{ MeV}$$

$$\Gamma[X(3872) \to \chi_{c2}\pi^{0}] = \frac{5g^{2}g_{1}^{2}}{18\pi^{2}f_{\pi}^{2}}\gamma_{n}\mu_{DD^{*}}^{2}\frac{m_{\chi_{c2}}}{m_{X(3872)}}p_{\pi}^{3}F_{2}[\gamma_{n},\Delta_{0},E_{\pi}]^{2} = 1.2 \text{ MeV}$$

exceeds total width! $\Gamma[X(3872)] < 1.2 \,\mathrm{MeV}$

must include coupling to charged D mesons

Observed decays of X(3872) account for >40% of branching fraction (PDG)

 $\sum_{J} \Gamma[X(3872) \to \chi_{cJ} \pi^0] < 0.6 \, \Gamma[X(3872)] < 79 \, \text{keV}$

neutral loops exceed this bound by orders of magnitude

must be nearly cancelled by loops w/ charged mesons

Including Charged Mesons

$$\Gamma[X(3872) \to \chi_{c0}\pi^{0}] = \frac{g^{2}g_{1}^{2}}{9\pi^{3}f_{\pi}^{2}}\mu_{DD^{*}}^{4}\frac{m_{\chi_{c0}}}{m_{X(3872)}}p_{\pi}^{3}\left(g_{0}F_{0}[\gamma_{n},\Delta_{0},E_{\pi}] - g_{+}F_{0}[\gamma_{c},\Delta_{+},E_{\pi}]\right)^{2}$$

$$\Gamma[X(3872) \to \chi_{c1}\pi^{0}] = \frac{g^{2}g_{1}^{2}}{12\pi^{3}f_{\pi}^{2}}\mu_{DD^{*}}^{4}\frac{m_{\chi_{c1}}}{m_{X(3872)}}p_{\pi}^{3}\left(g_{0}F_{1}[\gamma_{n},\Delta_{0},E_{\pi}] - g_{+}F_{1}[\gamma_{c},\Delta_{+},E_{\pi}]\right)^{2}$$

$$\Gamma[X(3872) \to \chi_{c2}\pi^{0}] = \frac{5g^{2}g_{1}^{2}}{36\pi^{3}f_{\pi}^{2}}\mu_{DD^{*}}^{4}\frac{m_{\chi_{c2}}}{m_{X(3872)}}p_{\pi}^{3}\left(g_{0}F_{2}[\gamma_{n},\Delta_{0},E_{\pi}] - g_{+}F_{2}[\gamma_{c},\Delta_{+},E_{\pi}]\right)^{2}$$

$$g_0^2 \operatorname{Re}\Sigma_0'(-E_X) + g_+^2 \operatorname{Re}\Sigma_+'(-E_X) = 1$$

$$g_0 = \sqrt{\frac{2\pi\gamma_n}{\mu_{DD^*}^2}}\cos\theta, \ g_+ = \sqrt{\frac{2\pi\gamma_c}{\mu_{DD^*}^2}}\sin\theta \qquad \qquad \gamma_c = 126 \text{ MeV}$$

Bounds require $\theta = 0.37 \pm 0.04$ $0.78 < g_0/g_+ < 0.99$

$$I = 0$$

 $g_0/g_+ = 1$

Predicted ratios differ from the HQSS predictions

 $\Gamma_2 : \Gamma_1 : \Gamma_0 :: 3.3 : 1.2 : 1$

for allowed value of $\theta \approx 0.37$

Can $X(3872) \rightarrow \chi_{cJ}\pi^0$ be measured at PANDA?

reconstructing ${}^{3}F_{4}$ charmonia in $J/\psi\gamma\gamma\gamma$

cut $E_{\gamma} > 150 \,\mathrm{keV}$

Conclusions

Using XEFT calculation of $X(3872) \rightarrow D^0 \bar{D}^0 \pi^0$

 $\Gamma[X(3872)] < 131 \,\mathrm{keV}$

PANDA: width & line shape will test XEFT, models

Hadronic loops for $X(3872) \rightarrow \chi_{cJ}\pi^0$ decays must include couplings to charged mesons $0.78 < g_0/g_+ < 0.99$ near I = 0 state

PANDA: measurement tests HQSS, molecular interpretation, hadronic loops

Back Up Slides

Factorization

alternative approach to X(3872) decays

S.Fleming, T.M., PRD78 (2008) 094019

S.Fleming, T.M., PRD85 (2012) 014016

Relationship between Factorization, Hadronic Loops

hadronic loop integral $\mathcal{M}_{1b}[X(3872) \rightarrow \chi_{c0}\pi^{0}] = \int \frac{\Lambda d^{3}l}{(2\pi)^{3}} \psi_{DD^{*}}(\vec{l}) \mathcal{M}[D^{*0}(\vec{l})\bar{D}^{0}(-\vec{l}) \rightarrow \chi_{c0}\pi^{0}]$ $\psi_{DD^{*}}(\vec{l}) = \frac{\sqrt{8\pi\gamma}}{l^{2} + \gamma^{2}} \qquad l^{2} \sim m_{D}E_{\pi} \sim (850 \,\mathrm{MeV})^{2}$ $\gamma_{n} = 14 \,\mathrm{MeV}, \gamma_{c} = 126 \,\mathrm{MeV}$

For $\gamma_{n,c} \ll \Lambda \ll \sqrt{m_D E_\pi}$

expand in $l^2/(m_D E_{\pi})$ recover results in factorization approach