Recent results on spectroscopy at BESII

LIU Beijiang Institute of High Energy Physics, Beijing (for BESIII collaboration)

Hadronic Physics with Lepton and Hadron Beams, JLab

Outline

- Introduction
- Selected results from BESIII
 - Light meson spectroscopy
 - Charmonium spectroscopy
- Summary

Beijing Electron Positron Collider (BEPC)

BESIII

detector

LINAC

- 1989-2004 (BEPC):
 - $L_{peak} = 1.0 \times 10^{31} / cm^2 s$
- 2009-now (BEPCII): X 100

 $L_{peak} = 1 \times 10^{33} / cm^2 s$

Physics at BESIII

Charmonium physics:

- spectroscopy
- transitions and decays

Light hadron physics:

- meson & baryon spectroscopy
- two-photon physics
- e.m. form factors of nucleon

Open Charm physics:

- decay constant, form factors
- CKM matrix: Vcd, Vcs
- D⁰-D⁰bar mixing and CPV
- rare/forbidden decays

Tau physics:

- tau decays near threshold
- tau mass scan

...and many more.

BESIII data samples

World largest J/ψ, ψ(2S), ψ(3770), Y(4260), ... produced directly from e⁺e⁻ collision

- Hadron spectroscopy is a key tool to investigate QCD
- testing QCD in the confinement regime
- providing insights into the fundamental degrees of freedom

Light meson spectroscopy

- X(ppbar) and X(1835)
- PWA of $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$

Charmonium decays provides an ideal hunting ground for light glueballs and hybrids

 $\Gamma(J/\psi \to \gamma G) \sim O(\alpha \alpha_s^2), \Gamma(J/\psi \to \gamma H) \sim O(\alpha \alpha_s^3),$ $\Gamma(J/\psi \to \gamma M) \sim O(\alpha \alpha_s^4), \Gamma(J/\psi \to \gamma F) \sim O(\alpha \alpha_s^4)$

"Gluon-rich" process
 Clean high statistics data samples from e⁺e⁻ production
 I(J^{PC}) filter in strong decays of charmonium

PWA of $J/\psi \rightarrow \gamma p \bar{p}$

Phys. Rev. Lett. 108, 112003 (2012)

- The fit with a BW and S-wave FSI (I=0) factor can well describe $p\bar{p}$ mass threshold structure.
- It is much better than that without FSI effect ($\Delta 2 \ln L = 5, 7.1\sigma$)
- Different FSI models → Model dependent uncertainty

$$R = \frac{B(\psi' \to \gamma X(p\overline{p}))}{B(J / \psi \to \gamma X(p\overline{p}))}$$

= (5.08^{+0.71}_{-0.45} (stat)^{+0.67}_{-3.58} (syst) ± 0.12(mod))%

Spin parity, mass, width and branching ratio:

$$\begin{split} J^{PC} &= 0^{-+}, > 6.8\sigma \ better \ than \ other \ J^{PC} assignments, M = \\ 1832^{+19}_{-5}(stat)^{+18}_{-17}(sys) \pm 19(model)MeV/c^2, \\ \Gamma &= 13 \pm 39(stat)^{+10}_{-13}(sys) \pm 4(model)MeV/c^2, \quad \Gamma < 76 \ MeV/c^2 \ (90\% \ CL), \\ B(J/\psi \to \gamma X)B(X \to p\bar{p}) = \left(9.0^{+0.4}_{-1.1}(stat)^{+1.5}_{-5.0}(sys) \pm 2.3(model)\right) * 10^{-5} \end{split}$$

In J/ ψ hadronic decays

Phys. Rev. Lett. 95, 262001 (2005)

• Discovered by BESII in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

X(1835)

- Confirmed by BESIII in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
 - \checkmark M = 1836.5 ± 3.0^{+5.6}_{-2.1} MeV/ c^2
 - ✓ $Γ = 190 \pm 9^{+38}_{-36} \text{ MeV}/c^2$
 - ✓ Angular distribution is consistent with 0⁻

Phys. Rev. Lett. 106, 072002 (2011)

11

Observation and Spin-Parity Determination of the X(1835) in $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$

Phys.Rev.Lett. 115 091803(2015)

- Any relations?
- What is the role of the ppbar threshold (and other thresholds)?
- Patterns in the production and decay modes

1.2

1.4

1.6

 $M_{\eta\pi^{+}\pi^{-}} \, (\text{GeV}/c^2)$

1.8

2.0

2.2

New: connection is emerging

- Use 1.09×10⁹ J/ψ events collected by BESIII in 2012
- Two decay modes of η'
 - η'→γπ⁺π⁻
 - η'→ηπ⁺π⁻, η→γγ
- Clear peaks of X(1835), X(2120), X(2370), η_c , and a structure near 2.6 GeV/ c^2
- A significant distortion of the $\eta' \pi^+ \pi^-$ line shape near the $p\overline{p}$ mass threshold

Anomalous line shape of $\eta' \pi^+ \pi^-$ near $p\overline{p}$ mass threshold: connection between X(1835) and X($p\overline{p}$)

The anomalous line shape can be modeled two models with equally good fit quality.

- Suggest the existence of a state, either a broad state with strong couplings to $p\overline{p}$, or a narrow state just below the $p\overline{p}$ mass threshold
- Support the existence of a $p\overline{p}$ molecule-like state or bound state

Phys. Rev. Lett. 110, 021601

$$\Gamma(J/\psi \to \gamma G_{0^+}) = \frac{4}{27} \alpha \frac{|p|}{M_{J/\psi}^2} |E_1(0)|^2 = 0.35(8) keV$$

$$\Gamma/\Gamma _ tot = 0.33(7)/93.2 = 3.8(9) \times 10^{-3}$$

Phys. Rev. Lett. 111, 091601

 $\Gamma(J/\psi \rightarrow \gamma G_{2^+}) = 1.01(22) keV$

 $\Gamma(J/\psi \to \gamma G_{2^+})/\Gamma_{tot} = 1.1(2) \times 10^{-2}$

Low lying glueballs have ordinary quantum number 0⁺⁺(1.5~1.7 GeV), 2⁺⁺(2.3~2.4 GeV), 0⁻⁺(2.3~2.6 GeV) mixing with qqbar mesons

Large Br in J/ψ radiative decays

Systematic exp. studies are required: \rightarrow Over-population

Map out the resonances

\rightarrow Production patterns

 ${\rm J}/\psi o \gamma \, /\omega/\phi$ + X

Other experiments: $\gamma\gamma$ processes from Belle2, ...

\rightarrow Decay patterns

"flavor blind", "chiral suppression", ...

LQCD and QCD inspired models

Isospin-violating decay of $\eta(1405) \rightarrow f_0(980)\pi$

The long standing E-ι puzzle:

 $\eta(1405) \rightarrow a_0 \pi, \eta(1475) \rightarrow K^* \overline{K}$, overpopulation? **Anomalously large isospin violation:** $Br(\eta(1405) \rightarrow f_0(980)\pi^0 \rightarrow \pi^+\pi^-\pi^0)$ $Br(r(1405) \rightarrow r^0(980)\pi^0 \rightarrow r^0\pi^0\pi^0) \cong (17.9 \pm 4.2)\%$

 $\frac{Br(\eta(1405) \to f_0(980)\pi^0 \to \pi^+\pi^-\pi^0)}{Br(\eta(1405) \to a_0^0(980)\pi^0 \to \eta\pi^0\pi^0)} \cong (17.9 \pm 4.2)\%$

Much larger than a_0-f_0 mixing (PRD 83 032003)

 $\xi_{af} = \frac{Br(\chi_{c1} \to f_0(980)\pi^0 \to \pi^+\pi^-\pi^0)}{Br(\chi_{c1} \to a_0(980)\pi^0 \to \eta\pi^0\pi^0)} < 1\%(90\% \ C.L.)$

 $f_0(980)$ is extremely narrow: $\Gamma \simeq 10$ MeV. **PDG:** Γ(**f**0(980)) ≅ 40~100 MeV.

200 150

PRL 108, 182001

 \mathbf{a}

• Confirmed the enhancement observed at BESII $M = 1795 \pm 7^{+13}_{-5} \pm 19 \pmod{MeV/c^2},$ $\Gamma = 95 \pm 10^{+21}_{-34} \pm 75 \pmod{MeV}$ Spin-parity is determined to be 0⁺

• the same as $f_0(1710)/f_0(1790)$, or a new state ?

PWA of $J/\psi \rightarrow \gamma \eta \eta$ (Phys. Rev. D87 092009 (2013))

Resonance	${\rm Mass}({\rm MeV}/c^2)$	$\rm Width (MeV/c^2)$	${\cal B}(J/\psi\to\gamma X\to\gamma\eta\eta)$	Significance
$f_0(1500)$	1468^{+14+23}_{-15-74}	$136^{+41+28}_{-26-100}$	$(1.65^{+0.26+0.51}_{-0.31-1.40})\times10^{-5}$	8.2σ
$f_0(1710)$	$1759{\pm}6^{+14}_{-25}$	$172{\pm}10^{+32}_{-16}$	$(2.35^{+0.13+1.24}_{-0.11-0.74}) \times 10^{-4}$	25.0 σ
$f_0(2100)$	$2081{\pm}13^{+24}_{-36}$	273^{+27+70}_{-24-23}	$(1.13^{+0.09+0.64}_{-0.10-0.28}) \times 10^{-4}$	13.9 σ
$f_{2}^{\prime}(1525)$	$1513{\pm}5{}^{+4}_{-10}$	75^{+12+16}_{-10-8}	$(3.42^{+0.43+1.37}_{-0.51-1.30}) \times 10^{-5}$	11.0 σ
$f_2(1810)$	$1822\substack{+29+66\\-24-57}$	$229^{+52+88}_{-42-155}$	$(5.40^{+0.60+3.42}_{-0.67-2.35}) \times 10^{-5}$	6.4σ
$f_2(2340)$	$2362\substack{+31+140\\-30-63}$	$334^{+62+165}_{-54-100}$	$(5.60^{+0.62+2.37}_{-0.65-2.07}) \times 10^{-5}$	7.6 σ

- Br of $f_0(1710)$ and $f_0(2100)$ are ~10x larger than that of $f_0(1500)$
 - Possible large overlap with LQCD predictions of 0+ Glueball: PRL 110 021601 (2013)
- Strong production of f₂(2340)

Model Independent PWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$

- ✓ Extract amplitudes in each M(π⁰π⁰) mass bin
- ✓ Significant features of the scalar spectrum includes structures near 1.5, 1.7 and 2.0 GeV/c²
- Multi-solution problem in MIPWA is usually unavoidable.
- Model Dependent PWA of global PWA fit is still needed to extract resonance parameters

Partial Wave Analysis of J/ψ→γφφ [PR D93 112011]

Besides η(2225), very little was known in the sector of pseudoscalar above 2 GeV. The new experimental results are helpful for mapping out the pseudoscalar excitations and searching for 0⁻⁺ glueball

Resonance	${\rm M}({\rm MeV}/c^2)$	$\Gamma({\rm MeV}/c^2)$	$B.F.(\times 10^{-4})$	Sig.
$\eta(2225)$	$2216^{+4}_{-5}{}^{+18}_{-11}$	$185^{+12}_{-14}{}^{+44}_{-17}$	$(2.40\pm0.10^{+2.47}_{-0.18})$	28.1σ
$\eta(2100)$	$2050^{+30}_{-24}{}^{+77}_{-26}$	$250^{+36+187}_{-30-164}$	$(3.30\pm0.09^{+0.18}_{-3.04})$	21.5σ
X(2500)	$2470^{+15}_{-19}{}^{+63}_{-23}$	$230^{+64}_{-35}{}^{+53}_{-33}$	$(0.17\pm0.02^{+0.02}_{-0.08})$	8.8σ
$f_0(2100)$	2102	211	$(0.43\pm0.04^{+0.24}_{-0.03})$	24.2σ
$f_2(2010)$	2011	202	$(0.35\pm0.05^{+0.28}_{-0.15})$	9.5σ
$f_2(2300)$	2297	149	$(0.44\pm0.07^{+0.09}_{-0.15})$	6.4σ
$f_2(2340)$	2339	319	$(1.91\pm0.07^{+0.72}_{-0.69})$	10.7σ
0^{-+} PHSP			$(2.74\pm0.15^{+0.16}_{-1.48})$	6.8σ

- Dominant contribution from pseudoscalars
 - η(2225) is confirmed;
 - η(2100) and X(2500) are observed with large significance.
- The three tensors f₂(2010), f₂(2300) and f₂(2340) stated in π⁻p reactions are also observed with a strong production of f₂(2340).
- Model-dependent PWA results are well consistent with the results from MIPWA

Hybrids

Lattice QCD Predictions:

	Approximate	J^{PC}	Total Widt	h (MeV)	Relevant Decays	Final States
	Mass~(MeV)		PSS	IKP		
π_1	1900	1^{-+}	80 - 170	120	$b_1\pi^{\dagger}, \ \rho\pi^{\dagger}, \ f_1\pi^{\dagger}, \ a_1\eta, \ \eta'\pi^{\dagger}$	$\omega\pi\pi^{\dagger}, 3\pi^{\dagger}, 5\pi, \eta 3\pi^{\dagger}, \eta'\pi^{\dagger}$
η_1	2100	1^{-+}	60 - 160	110	$a_1\pi, f_1\eta^{\dagger}, \pi(1300)\pi$	$4\pi, \eta 4\pi, \eta \eta \pi \pi^{\dagger}$
η'_1	2300	1^{-+}	100 - 220	170	$K_1(1400)K^{\dagger}, K_1(1270)K^{\dagger}, K^*K^{\dagger}$	$KK\pi\pi^{\dagger}, KK\pi^{\dagger}, KK\omega^{\dagger}$
b_0	2400	0^{+-}	250 - 430	670	$\pi(1300)\pi, h_1\pi$	4π
h_0	2400	0^{+-}	60 - 260	90	$b_1 \pi^{\dagger}, h_1 \eta, K(1460) K$	$\omega\pi\pi^{\dagger}, \eta 3\pi, KK\pi\pi$
h'_0	2500	0^{+-}	260 - 490	430	$K(1460)K, K_1(1270)K^{\dagger}, h_1\eta$	$KK\pi\pi^{\dagger}, \eta 3\pi$
b_2	2500	2^{+-}	10	250	$a_2\pi^{\dagger}, a_1\pi, h_1\pi$	$4\pi, \ \eta\pi\pi^{\dagger}$
h_2	2500	2^{+-}	10	170	$b_1 \pi^{\dagger}, \ \rho \pi^{\dagger}$	$\omega\pi\pi^{\dagger}, 3\pi^{\dagger}$
h_2'	2600	2^{+-}	10 - 20	80	$K_1(1400)K^{\dagger}, K_1(1270)K^{\dagger}, K_2^*K^{\dagger}$	$KK\pi\pi^{\dagger}, KK\pi^{\dagger}$

Complementary studies at BESIII

Amplitude analysis of $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$

Phys. Rev. D 95, 032002 (2017)

• Clear evidence for $a_2(1700)$ in x_{c1} decays.

- First measurement of $g'_{\eta'\pi} \neq 0$ using $a_0(980) \rightarrow \eta\pi$ line shape.
- Measured upper limits for $\pi_1(1^{-+})$ in 1.4 2.0 GeV/c² region.

Charmonium spectroscopy

XYZ states:

Cannot fit in the spectrum of conventional heavy quarkonia

Observations of Z_c

Tetraquark? Hadroquarkonium? Molecule? Threshold effect?

Summary of the Z_c at BESIII

	Z _c [±] (3900)	Z _c [±] (4020)	DD* threshold
	e + e -→π+π-J/ψ M=3899.0±3.6±4.9MeV Γ = 46±10±20 MeV	e ⁺ e ⁻ →π ⁺ π ⁻ h _c M= 4022.9±0.8±2.7MeV Γ = 7.9±2.7±2.6 MeV	(3875 MeV) D*D* threshold (4017 MeV)
	Z _c ⁰ (3900)	Z _c ⁰ (4020)	Two isospin triplets
	$e^+e^- \rightarrow \pi^0 \pi^0 J/\psi$ M=3894.8±2.3 MeV Γ =29.6±8.2 MeV	e^+e^- → $\pi^0\pi^0h_c$ M=4023.9±2.2±3.8 MeV Γ Fixed at Z _c [±] (4020)	established
ĺ	Z _c [±] (3885)	Z _c [±] (4025)	Mass/width
	$e^+e^- → π(D\overline{D}^*)^{\pm}$ M=3882.2±1.1±1.5 MeV Γ =26.5±1.7±2.1 MeV	e ⁺ e ⁻ →π(<i>D</i> [*] <i>D</i> [*]) [±] M= 4026.3±2.6±3.7 MeV Γ = 24.8±5.6±7.7 MeV	difference in two modes to be understood
	Z _c ⁰ (3885)	Z _c ⁰ (4025)	
	$e^+e^- → π^0 (D\overline{D}^*)^0$ M=3885.7±5.7±8.4 MeV Γ = 35±12±15 MeV	$e^+e^- \rightarrow \pi^0 (D^* \overline{D}^*)^0$ M= 4025.5±4.7±3.1 MeV $\Gamma = 23.0\pm 6.0 \pm 1.0$ MeV	

- J^{P} of $Z_{c}(3900)=1^{+}$ determined from PWA
- DD* dominates $Z_c(3900)$ decays and D*D* dominates $Z_c(4025)$ decays
- No significant $Z_c(3900) \rightarrow h_c \pi, Zc(4020) \rightarrow J/\psi \pi$

Determination of J^p of Zc(3900)

Phys.Rev.Lett. 119 (2017) 072001

J^p of Zc favor to be 1⁺ with statistical significance larger than 7.3σ over other quantum numbers

Amplitude analysis with helicity formalism formalism taking $\pi^+\pi^-J/\psi$ as final states **Simultaneous** fit to data samples at 4.23GeV and 4.26GeV $\pi^+\pi^-$ spectrum is parameterized with σ , f0(980), f2(1270) and f0(1370)

Determination of J^p of Zc(3900)

$Z_c: J^P$	M (MeV)	$g_1'({ m GeV^2})$	g_2^\prime/g_1^\prime	$-\ln L$
0^{-}	3906.3 ± 2.3	0.079 ± 0.007	25.8 ± 2.9	-1528.8
1-	3903.1 ± 1.9	0.063 ± 0.005	26.5 ± 2.6	-1457.7
1+	3900.2 ± 1.5	0.075 ± 0.006	21.8 ± 1.7	-1569.8
2^{-}	3905.2 ± 2.1	0.060 ± 0.004	28.7 ± 2.7	-1516.5
2^{+}	3894.3 ± 1.9	0.051 ± 0.005	23.4 ± 3.3	-1316.2

•J^p of Zc favor to be 1⁺ with statistical significance larger than 7.3σ over other quentum numbers

• Significance for $e^+e^- \rightarrow Z_c^+(4020) \pi^- + c.c \rightarrow \pi^+\pi^- J/\psi$ is ~3 σ . Upper limits at 90% C.L.:

$$\frac{\sigma(e^+e^- \to Z_c^+(4020) \ \pi^- + c.c \to \pi^+\pi^- J/\psi)}{\sigma(e^+e^- \to Z_c^+(3900) \ \pi^- + c.c \to \pi^+\pi^- J/\psi)} < 3.3\% \text{ at } 4.23 \text{ GeV}$$

$$<25.1\% \text{ at } 4.26 \text{ GeV}$$

30

A charged structure in $\pi\psi'$

Observation of $e^+e^- \rightarrow \gamma X(3872)$

Strong evidence for $X(3872) \rightarrow \pi \pi J/\psi$

 $M = 3871.9 \pm 0.7 \pm 0.2 MeV/c^2$

PRL 112, 092001 (2014)

Suggestive of $Y(4260) \rightarrow \gamma X(3872)$

★ New mode of production of X(3872) and Y(4260) decay? If we take $\mathcal{B}(X(3872) \rightarrow \pi^+\pi^- J/\psi) \sim 5\%$, (>2.6% in PDG) $\frac{\sigma(e^+e^- \rightarrow \gamma X(3872))}{\sigma(e^+e^- \rightarrow \pi^+\pi^- J/\psi)} \sim 10\%$ Large transition ratio !

$e^+e^- \rightarrow \pi^+\pi^- J/\psi$

□Simultaneous fit to XYZ data(left) and R-scan data (right)

Coherent sum of two Breit-Wigner like structure plus one incoherent ψ **(3770)**

 $M = (4222.0\pm3.1\pm1.4) \text{ MeV}, \quad \Gamma = (44.1\pm4.3\pm2.0) \text{ MeV},$

Lower and narrower than previous Y(4260) PDG value

>M = (4320.0±10.4±7) MeV, Γ = (101.4±25±10) MeV ,

a little bit lower than Y(4360) PDG

□Compare with one Breit-Wigner fit, the significance of the second Breit-wigner is 7.6σ □Is this Y(4260) + Y(4360) ? The first observation of Y(4360) $\rightarrow \pi^+\pi^-J/\psi$? □Y(4008) is not confirmed

 $e^+e^- \rightarrow \pi^+\pi^-\psi'$

□Cross section of $e^+e^- \rightarrow \pi^+\pi^-\psi$ (3686) has been measured at 16 energy points from 4.008 to 4.600 GeV.

□A clear peak around Y(4360), consistent with Belle&BaBar's results, but with much improved precision

A fitting on the cross sections is ongoing

 $e^+e^- \rightarrow \pi^+\pi^-h_c$

Given Fitted with coherent sum of two Breit-Wigner like structue

>
$$M_1$$
=4218.4^{+5.5}_{-4.5}±0.9 MeV/c², Γ_1 = 66.0^{+12.3}_{-8.3}±0.4 MeV → Y(4220)

 \succ M₂=4391.5^{+6.3}_{-6.8}±1.0 MeV/c², Γ₂=139.5^{+16.2}_{-20.6}±0.6 MeV → Y(4390)

The Y(4220) here is consistent with the states observed in $\pi^+\pi^- J/\psi$ around 4222MeV

 $e^+e^- \rightarrow \omega \chi_{c1}$

Only ωχ_{c0} has significant signal
 The cross section is fitted with coherent sum of a Breit-Wigner and a phase space term

 $M = 4230 \pm 8 \pm 6 \text{ MeV}$, $\Gamma = 38 \pm 12 \pm 2 \text{ MeV}$

The mass and width here is compatible with the Y observed in $\pi^+\pi^-J/\psi$ and $e^+e^- \rightarrow \pi^+\pi^-h_c$

 $e^+e^- \rightarrow \pi^+ D^0 D^{*-}$

Fit with a constant (pink dashed triple-dot line) and two constant width relativistic BW functions (green dashed double-dot line and aqua dashed line).

 $M(Y(4220)) = (4224.8 \pm 5.6 \pm 4.0) \text{ MeV/c}^2, \Gamma(Y(4220)) = (72.3 \pm 9.1 \pm 0.9) \text{ MeV}.$ $M(Y(4390)) = (4400.1 \pm 9.3 \pm 2.1) \text{ MeV/c}^2, \Gamma(Y(4220)) = (181.7 \pm 16.9 \pm 7.4) \text{ MeV}.$

 $e^+e^- \rightarrow \pi^+ D^0 D^{*-}$

- The statistical significance of two resonances assumption over one resonance is greater than 10s.
- → The resonant parameters of Y(4220) and Y(4390) states are consistent with the structures observed in $e^+e^- \rightarrow \pi^+\pi^-h_c$. The resonant parameters of Y(4220) are also consistent with those of the resonance observed in $e^+e^- \rightarrow \omega \chi_{c0}$ and $e^+e^- \rightarrow \pi^+\pi^- J/\psi$. 38

BESIII data taking status & plan (run ~8-10 years)

	Previous data	BESIII present & future	Goal
J/ ψ	BESII 58M	1.2 B 20* BESII	10 B
ψ'	CLEO: 28 M	0.5 B 20* CLEOc	3B
ψ"	CLEO: 0.8/fb	2.9/fb 3.5*CLEOc	20 /fb
Above open charm threshold	CLEO: 0.6/fb @ψ(4160)	0.5/fb @ ψ(4040) 2.3/fb@~4260, 0.5/fb@4360 0.5/fb@4600, 1/fb@4420 Scan from 4.19 – 4.28, 10 MeV step, 500 pb-1/point	5-10 /fb
R scan & Tau	BESII	3.8-4.6 GeV at 105 energy points 2.0-3.1 GeV at 20 energy points	
Y(2175)		100 pb ⁻¹	
ψ(4170)		3 fb ⁻¹	

 The data with unprecedented statistical accuracy and clearly defined initial and final state properties brings BESIII great opportunities to investigate QCD exotics and many other topics

Thank you

Light Baryon spectroscopy

Charmonium decays can provide novel insights into baryons and complementary information to other experiments

- ✓ Missing N* with small couplings to $\pi N \& \gamma N$, but large coupling to gggN : $\psi \to N \overline{N} \pi / \eta / \eta' / \omega / \phi$, $\overline{p} \Sigma \pi$, $\overline{p} \Lambda K$...
- ✓ Not only N^{*}, but also Λ^* , Σ^* , Ξ^*
- Gluon-rich environment: a favorable place for producing hybrid (qqqg) baryons
- ✓ High statistics of charmonium @ BES III

Observation of two new N* resonances in $\psi(3686) \rightarrow p\bar{p}\pi^0$

- In photon or meson beam studies, isospin 1/2 and
 3/2 resonances are excited, complicating the analysis
- Δ resonances suppressed in charmonium decays to $p\bar{p}\pi^0$, giving a cleaner spectrum
 - Thought to be dominated by two body decays involving N* intermediate states
 - Also consider $p\bar{p}$ resonances ($\psi(3686) \rightarrow R\pi^0$)
- Seven N* states observed in partial wave analysis
 - Two new resonances, N(2300) with $J^P = 1/2^+$ and N(2570) with $J^P = 5/2^-$
 - Other five consistent with previous results

Resonance	$M(MeV/c^2)$	$\Gamma({ m MeV}/c^2)$	ΔS	ΔN_{dof}	Sig.
N(1440)	$1390^{+11}_{-21}^{+21}_{-30}$	$340^{+46}_{-40}^{+70}_{-156}$	72.5	4	11.5σ
N(1520)	1510^{+3+11}_{-7-9}	$115^{+20}_{-15}^{+0}_{-40}$	19.8	6	5.0σ
N(1535)	1535^{+9+15}_{-8-22}	$120^{+20}_{-20}{}^{+0}_{-42}$	49.4	4	9.3σ
N(1650)	$1650^{+5}_{-5}^{+11}_{-30}$	$150^{+21}_{-22}^{+14}_{-50}$	82.1	4	12.2σ
N(1720)	$1700^{+30}_{-28}^{+32}_{-35}$	450^{+109}_{-94}	55.6	6	9.6σ
N(2300)	$2300\substack{+40+109\\-30-0}$	$340\substack{+30+110\\-30-58}$	120.7	4	15.0σ
N(2570)	2570^{+19+34}_{-10-10}	250^{+14+69}_{-24-21}	78.9	6	11.7σ

Measurements of $\psi(3686) \rightarrow (\gamma) K^{\mp} \Lambda \bar{\Xi}^{\pm}$

BESIII: PRD 91, 092006 (2015)

• $\psi(3686) \rightarrow (\gamma) K^{\mp} \Lambda \bar{\Xi}^{\pm}; \Lambda \rightarrow p\pi, \bar{\Xi} \rightarrow \Lambda \pi; \Lambda \rightarrow p\pi$

Decay	Branching fraction
$\psi(3686) \rightarrow K^- \Lambda \bar{\Xi}^+$	$(3.86 \pm 0.27 \pm 0.32) \times 10^{-5}$
$\psi(3686) \rightarrow \Xi(1690)^- \overline{\Xi}^+, \ \Xi(1690)^- \rightarrow K^- \Lambda$	$(5.21 \pm 1.48 \pm 0.57) \times 10^{-6}$
$\psi(3686) \rightarrow \Xi(1820)^- \overline{\Xi}^+, \ \Xi(1820)^- \rightarrow K^- \Lambda$	$(12.03 \pm 2.94 \pm 1.22) \times 10^{-6}$
$\psi(3686) \rightarrow K^- \Sigma^0 \overline{\Xi}^+$	$(3.67 \pm 0.33 \pm 0.28) \times 10^{-5}$
$\psi(3686) \rightarrow \gamma \chi_{c0}, \ \chi_{c0} \rightarrow K^- \Lambda \bar{\Xi}^+$	$(1.90 \pm 0.30 \pm 0.16) \times 10^{-5}$
$\psi(3686) \rightarrow \gamma \chi_{c1}, \ \chi_{c1} \rightarrow K^- \Lambda \bar{\Xi}^+$	$(1.32 \pm 0.20 \pm 0.12) \times 10^{-5}$
$\psi(3686) \rightarrow \gamma \chi_{c2}, \ \chi_{c2} \rightarrow K^- \Lambda \bar{\Xi}^+$	$(1.68 \pm 0.26 \pm 0.15) \times 10^{-5}$
$\chi_{c0} \rightarrow K^- \Lambda \bar{\Xi}^+$	$(1.96 \pm 0.31 \pm 0.16) \times 10^{-4}$
$\chi_{c1} \rightarrow K^- \Lambda \bar{\Xi}^+$	$(1.43 \pm 0.22 \pm 0.12) \times 10^{-4}$
$\chi_{c2} \rightarrow K^- \Lambda \bar{\Xi}^+$	$(1.93 \pm 0.30 \pm 0.15) \times 10^{-4}$

- Observe two hyperons, $\Xi(1690)$ and $\Xi(1820)$ in M(KA)
 - Both are well established states
 - Resonance parameters consistent with the PDG

$\Xi(1690)^{-}$	$\Xi(1820)^{-}$
$1687.7 \pm 3.8 \pm 1.0$	$1826.7 \pm 5.5 \pm 1.6$
$27.1 \pm 10.0 \pm 2.7$	$54.4 \pm 15.7 \pm 4.2$
74.4 ± 21.2	136.2 ± 33.4
4.9	6.2
32.8	26.1
$5.21{\pm}1.48{\pm}0.57$	$12.03 \pm 2.94 \pm 1.22$
1690 ± 10	1823 ± 5
<30	24^{+15}_{-10}
	$\begin{array}{r} \Xi(1690)^- \\ 1687.7 \pm 3.8 \pm 1.0 \\ 27.1 \pm 10.0 \pm 2.7 \\ 74.4 \pm 21.2 \\ 4.9 \\ 32.8 \\ 5.21 \pm 1.48 \pm 0.57 \\ 1690 \pm 10 \\ < 30 \end{array}$