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Introduction
Light Meson Sector

PDG meson listings [PDG 2017]

I 80 light unflavored mesons (47 in summary table)

I > 100 possible further states

I 28 strange mesons (15 in summary table)

Important quantum numbers

JP

I J: Spin of the meson

I P: Eigenvalue under parity conjugation of the meson
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Introduction
Diffractive Production

xx

x x

X−

I Excited mesons appear as intermediate states

I Various reactions to produce them: diffractive production in πp scattering

I Various final states: π−π−π+ final state
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Introduction
COMPASS Setup for Hadron beams
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Target

RPD

RICH

ECAL 2

HCAL 2

ECAL 1

HCAL 1

SM 1

SM 2

Beam

M2 beam line

I Located at CERN (SPS)

I 190 GeV/c secondary hadron beams
I h− beams: 97 % π−, 2 % K−, 1 % p̄
I h+ beams: 75 % p, 24 % π+, 1 % K+
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I Various targets:
I `H2

I Ni
I Pb
I W



Introduction
COMPASS Setup for Hadron beams

4/22 S. Wallner for the COMPASS Collaboration Hadron Spectroscopy at COMPASS

Target

RPD

RICH

ECAL 2

HCAL 2

ECAL 1

HCAL 1

SM 1

SM 2

Beam

COMPASS spectrometer

I Two-stage magnetic spectrometer

å Large acceptance
å Broad kinematic range

I Electromagnetic and hadronic calorimeters

I Particle ID (CEDARs, RICH)



Partial-Wave Analysis
Motivation [Adolph et al., PRD 95, 032004 (2017)]
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I Rich spectrum of overlapping and interfering X−

I Dominant states
I “Hidden” states with lower intensity

I Also structure in ππ subsystem

å Successive 2-body decay via ππ resonance called isobar

I Also structure in angular distributions
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1640 < m3π < 1680MeV
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Partial-Wave Analysis
Isobar Model
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I Given partial wave JPC Mε ξ π L at a fixed mass m3π

å Calculate 5D decay phase-space distribution of final state

I Measured phase-space distribution

å contains coherent contributions of various partial waves

I(τ) =

∣∣∣∣∣∣
waves∑

i

Ti ψi (τ)

∣∣∣∣∣∣
2

å Perform maximum-likelihood fit in bins of m3π (“mass-independent fit”)

å Decompose data into partial waves
å Extract m3π dependence of partial-wave amplitudes
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Partial-Wave Analysis
Model Building [Adolph et al., PRD 95, 032004 (2017)]

I(τ) =

∣∣∣∣∣∣
waves∑
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Ti ψi (τ)

∣∣∣∣∣∣
2

Wave Set

I 88 partial waves for π− + p → π−π−π+ + precoil

I Largest wave set used so far in PWA of 3π final state
I Spin J up to 6
I Angular momentum L up to 6
I 6 different π−π+ isobars

Challenge: Construction of the partial-wave set Work in progress

I Semi-automatized model selection from data:
I Starting with a large pool of possible waves
I Find the best subset of waves that describe the data

I Adding a penalty term to the log-likelihood, which suppresses small intensities

I Challenge: Shape of the penalty term, parameter tuning, ...
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Partial-Wave Analysis
t′ Binning [Adolph et al., PRD 95, 032004 (2017)]
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Challenge

I Production also depends on t ′

I Large data set (≈ 50 M exclusive events)

å Perform PWA also in narrow bins of t ′ (t ′-resolved analysis)
å Extract m3π AND t ′ dependence of partial-wave amplitudes
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Partial-Wave Analysis
Results [Adolph et al., PRD 95, 032004 (2017)]
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Partial-Wave Analysis
Freed-Isobar Method
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Challenge

Needs knowledge of isobar amplitude
I How good are the parameterizations?

I Single isobar may not be approximated well by a Breit-Wigner amplitude

I Real shape may be complicated

I How good is the isobar model
I Effects of rescattering?
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Partial-Wave Analysis
Freed-Isobar Method
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Partial-Wave Analysis
Freed-Isobar Method

Example: Effective amplitude from interference of [ππ]S and f0(980)
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Partial-Wave Analysis
Freed-Isobar Method

Extract isobar amplitudes from data

I Replace model with step-like isobars

I Extract binned shape in mass-independent
fit

I Computationally more expensive
I Up to 100 additional parameters per

wave with freed isobar

I Needs large data sets

Effective amplitude from interference
of [ππ]S and f0(980)
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I Up to 100 additional parameters per

wave with freed isobar

I Needs large data sets

Effective amplitude from interference
of [ππ]S and f0(980)
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Partial-Wave Analysis
Freed-Isobar Method [Adolph et al., PRD 95, 032004 (2017)]
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This is not a Dalitz-plot
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This is not a Dalitz-plot

Investigate the ππ subsystem

I No constrains on ππ resonances

I Extract ππ amplitude: intensity AND phase
I Extract ππ resonances

I Investigate effects of rescattering

http://dx.doi.org/10.1103/PhysRevD.95.032004


Resonance-Model Fit
Method

Data

(I) Partial-Wave
Decomposition

Partial Waves

Intensities and relative phases of the partial waves

(II) Resonance-Model Fit

Resonance Parameters

Masses and widths of the meson resonances
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Resonance-Model Fit
Method

Modeling m3π dependence

I Parameterize m3π dependence of
partial-wave amplitude (intensity & phase)

Tα(m3π, t
′) =

∑
k∈Compα

Ckα(t ′) · Dk(m3π, t
′; ζk)

I Dynamic functions Dk(m3π, t
′; ζk)

I For resonances: Breit-Wigner amplitude
I For non-resonant term: Phenomenological

parameterization

I “Coupling amplitudes”Ckα(t ′)
I Determine strength and phase of

components
I Independent coupling amplitude

for each t′ bin
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Resonance-Model Fit
Method

The fit

I Describe large fraction of data consistently
I Simultaneously fit 14 waves (≈ 60 %)
I Including 11 resonance components (a1, a2, a4, π, π1, π2)

I Extract t ′ dependence of model components

I Computationally very expensive
I 14 × 14 spin-density matrix ×11 t′ bins
I 76 505 data points
I 722 real fit parameters (51 shape parameters)

I Multimodality: Fit result depends on start-parameter set and fitting procedure
I Perform 1000 fit attempts
I 30 000 CPUh for one fit result
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Resonance-Model Fit
Systematic Uncertainties

Challenge: Many systematic effects may influence the fit result

I Included resonances and non-resonant terms

I Parameterization of resonances and non-resonant terms

I Selected subset of waves

I Fitting ranges

I . . .

I Systematic uncertainties one order of magnitude larger than statistical ones

I Performed more than 200 systematic studies to
I improve the resonance model
I determine the systematic uncertainties of extracted parameters

I Computationally expensive and time consuming
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Results: JPC = 1−+ Partial Wave
Partial-Wave Decomposition

P

xx

x x

[1−+ 1+]

π−

π+

π−
ρ(770)P

p precoil

π−
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I 1−+: spin-exotic π1-like quantum numbers
I Forbidden quantum numbers for qq̄ system (non-rel.)
I Lattice-QCD: lightest hybrid predicted with 1−+ quantum numbers

I Broad intensity distribution

I Strong evolution with t ′
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Results: JPC = 1−+ Partial Wave
History

BNL E852 21 waves

I Narrow peak in BNL E852 publication at 1.6 GeV/c2
[Chung S., Phys.Rev. D65 (2002)]

I No peak in later BNL E852 publication using more data [Dzierba A., Phys.Rev. D73 (2006)]

I Main features reproduced in COMPASS data using the same model

I Similar results in analysis of VES data [Zaitsev A., Nucl.Phys A675 (2000) 155C-160C]

I Strongest evidence for possible π1(1600) in high-t ′ region
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Results: JPC = 1−+ Partial Wave
History
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Results: JPC = 1−+ Partial Wave
History

COMPASS 2008 88 waves
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Results: JPC = 1−+ Partial Wave
History

COMPASS 2008 88 waves (low t ′) BNL E852 36 (high) vs 21 (low) waves

I Narrow peak in BNL E852 publication at 1.6 GeV/c2
[Chung S., Phys.Rev. D65 (2002)]
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Results: JPC = 1−+ Partial Wave
Resonance-Model Fit
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I Large non-resonant contribution in spin-exotic 1−+ wave, but ...

I Strong modulation with t ′ can be exploited in t ′-resolved analysis

I Result in qualitative agreement with simple Deck-MC studies

I No description of data without Breit-Wigner component in 1−+ 1+ ρ(770)π P
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Summary & Outlook
Resonance-Model Fit

Resonance-model fits

I Extract Breit-Wigner masses and widths with high statistical precision

I Model yields consistent description of 14 partial wave amplitudes

I Extract t ′ dependence of model components

I Uncertainties dominated by systematic effects

JPC = 1−+ partial wave

I Large non-resonant contribution

å Large systematic uncertainties e.g. from non-resonant parameterization

I Strong modulation with t ′

å Improved separation of resonance and non-resonant contribution

I COMPASS data is consistent with π1(1600) Breit-Wigner component plus
non-resonant term

Outlook [arXiv:1707.02848]

I Further studies of selected JPC sectors

I Advanced parameterizations developed in collaboration with JPAC

20/22 S. Wallner for the COMPASS Collaboration Hadron Spectroscopy at COMPASS
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Outlook
Partial-Wave Decomposition

Freed-isobar method

I Allows to study the ππ sub-system
I As a function of the X− JPC and mass

I Needs large data sets

I Outlook:
I Free more partial waves with different isobar-JPC

I Appearance of continuous ambiguities
I Resolved by additional constrains

Semi-automatized model selection from data

I Allows to define the wave set with minimal bias

I Which kind of penalty term to use?

I Outlook:
I First application to 5π and 3π final state
I Extensive studies of different penalty terms on Monte Carlo data
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Further Analysis Projects

Further diffractively produced final states

ηπ−, η′π−, ωπ−π0, ...

Kaon diffraction

I Using 2 % K− beam

I Study of kaonic resonances in e.g.
K−π−π+ final state

xx

x x

X−

K−

π+

π−P

p precoil

K−

π−γ and K−γ Processes (Primakoff)

I Measurement of electric and magnetic
polarisability of pions and kaons

I Study of chiral dynamics

I Measurement of radiative couplings
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