Hadron Spectroscopy at COMPASS

Stefan Wallner for the COMPASS Collaboration

Physik Department E18 - Technische Universität München

September 6, 2017 Jefferson Lab Hadron Physics with Lepton and Hadron Beams

PDG meson listings

▶ 80 light unflavored mesons (47 in summary table)

[PDG 2017]

- > 100 possible further states
- 28 strange mesons (15 in summary table)

Important quantum numbers

► J: Spin of the meson

▶ *P*: Eigenvalue under parity conjugation of the meson

PDG meson listings

[PDG 2017]

- ▶ 80 light unflavored mesons (47 in summary table)
- ▶ > 100 possible further states
- 28 strange mesons (15 in summary table)

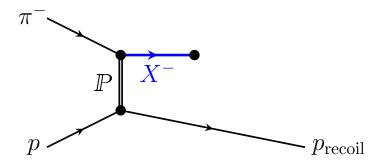
Important quantum numbers

JΡ

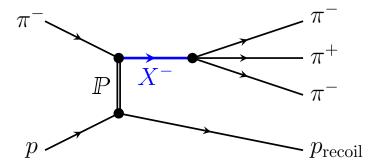
- ► J: Spin of the meson
- P: Eigenvalue under parity conjugation of the meson

• Excited mesons appear as intermediate states

- Various reactions to produce them: diffractive production in πp scattering
- Various final states: $\pi^-\pi^-\pi^+$ final state

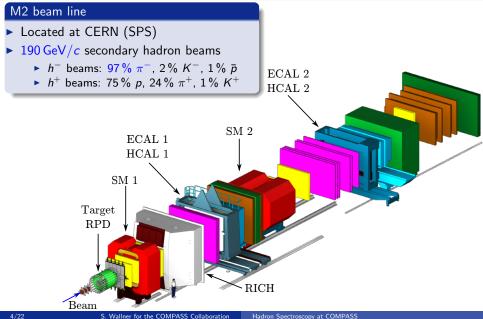


- Excited mesons appear as intermediate states
- Various reactions to produce them: diffractive production in πp scattering
- Various final states: $\pi^-\pi^-\pi^+$ final state

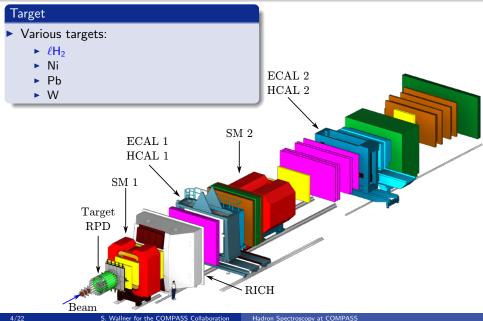


- Excited mesons appear as intermediate states
- Various reactions to produce them: diffractive production in πp scattering
- ▶ Various final states: $\pi^-\pi^-\pi^+$ final state

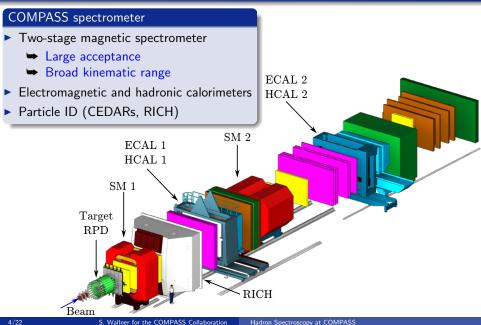
Introduction COMPASS Setup for Hadron beams

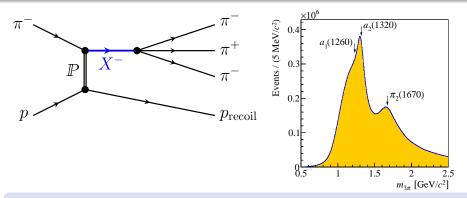


Introduction COMPASS Setup for Hadron beams



Introduction COMPASS Setup for Hadron beams

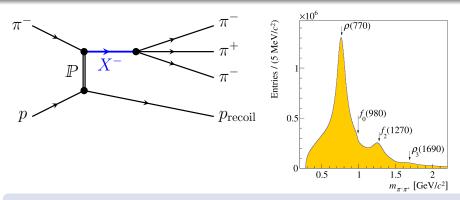




- Rich spectrum of overlapping and interfering X⁻
 - Dominant states
 - "Hidden" states with lower intensity
- Also structure in $\pi\pi$ subsystem

• Successive 2-body decay via $\pi\pi$ resonance called isobar

Also structure in angular distributions

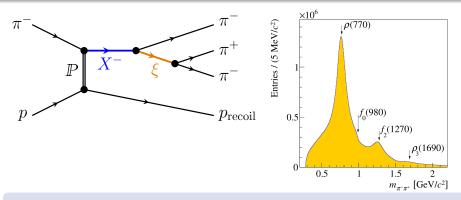


- ► Rich spectrum of overlapping and interfering X⁻
 - Dominant states
 - "Hidden" states with lower intensity
- Also structure in $\pi\pi$ subsystem

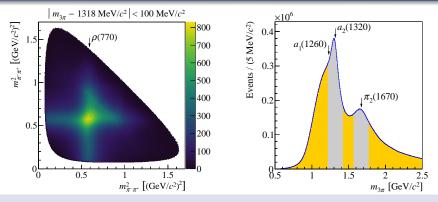
Successive 2-body decay via $\pi\pi$ resonance called isobar

Also structure in angular distributions

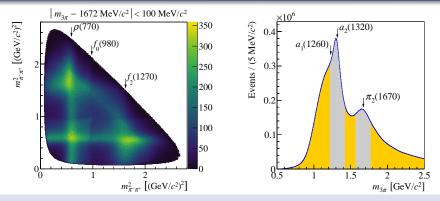
[Adolph et al., PRD 95, 032004 (2017)]



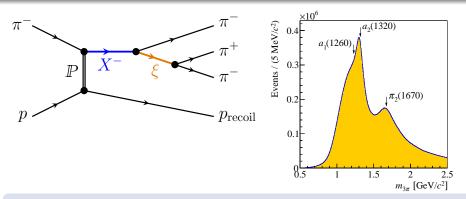
- Rich spectrum of overlapping and interfering X⁻
 - Dominant states
 - "Hidden" states with lower intensity
- Also structure in $\pi\pi$ subsystem
 - Successive 2-body decay via $\pi\pi$ resonance called isobar



- Rich spectrum of overlapping and interfering X⁻
 - Dominant states
 - "Hidden" states with lower intensity
- Also structure in $\pi\pi$ subsystem
 - Successive 2-body decay via $\pi\pi$ resonance called isobar

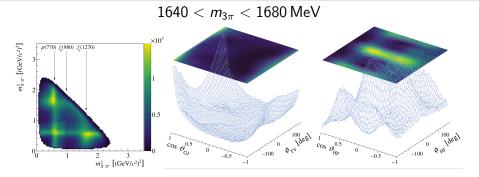


- Rich spectrum of overlapping and interfering X⁻
 - Dominant states
 - "Hidden" states with lower intensity
- Also structure in $\pi\pi$ subsystem
 - Successive 2-body decay via $\pi\pi$ resonance called isobar



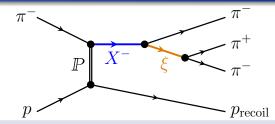
- Rich spectrum of overlapping and interfering X⁻
 - Dominant states
 - "Hidden" states with lower intensity
- Also structure in $\pi\pi$ subsystem
 - Successive 2-body decay via $\pi\pi$ resonance called isobar

[Adolph et al., PRD 95, 032004 (2017)]



- Rich spectrum of overlapping and interfering X⁻
 - Dominant states
 - "Hidden" states with lower intensity
- Also structure in $\pi\pi$ subsystem
 - Successive 2-body decay via $\pi\pi$ resonance called isobar
- Also structure in angular distributions

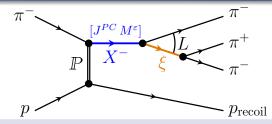
Partial-Wave Analysis Isobar Model



Given partial wave J^{r ⊂} M^ε ξ π L at a fixed mass m_{3π}
 Calculate 5D decay phase-space distribution of final state

Measured phase-space distribution

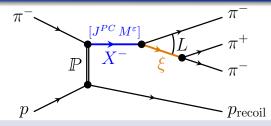
Partial-Wave Analysis Isobar Model



- Given partial wave $J^{PC} M^{\varepsilon} \xi \pi L$ at a fixed mass $m_{3\pi}$
 - ➡ Calculate 5D decay phase-space distribution of final state
- Measured phase-space distribution

contains coherent contributions of various partial waves

Perform maximum-likelihood fit in bins of m_{3π} ("mass-independent fit")
 Decompose data into partial waves



• Given partial wave $J^{PC} M^{\varepsilon} \xi \pi L$ at a fixed mass $m_{3\pi}$

➡ Calculate 5D decay phase-space distribution of final state

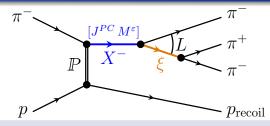
Measured phase-space distribution

contains coherent contributions of various partial waves

$$\mathcal{I}(\tau) = \left| \sum_{i}^{\text{waves}} \mathcal{T}_{i} \psi_{i}(\tau) \right|$$

▶ Perform maximum-likelihood fit in bins of $m_{3\pi}$ ("mass-independent fit")

- Decompose data into partial waves
- \blacktriangleright Extract $m_{3\pi}$ dependence of partial-wave amplitudes



• Given partial wave $J^{PC} M^{\varepsilon} \xi \pi L$ at a fixed mass $m_{3\pi}$

➡ Calculate 5D decay phase-space distribution of final state

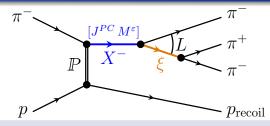
Measured phase-space distribution

contains coherent contributions of various partial waves

$$\mathcal{I}(au) = \left| \sum_{i}^{\text{waves}} \mathcal{T}_{i} \psi_{i}(au) \right|$$

Perform maximum-likelihood fit in bins of $m_{3\pi}$ ("mass-independent fit")

- Decompose data into partial waves
- \blacktriangleright Extract $m_{3\pi}$ dependence of partial-wave amplitudes



• Given partial wave $J^{PC} M^{\varepsilon} \xi \pi L$ at a fixed mass $m_{3\pi}$

➡ Calculate 5D decay phase-space distribution of final state

Measured phase-space distribution

contains coherent contributions of various partial waves

$$\mathcal{I}(au) = \left| \sum_{i}^{\text{waves}} \mathcal{T}_{i} \psi_{i}(au) \right|$$

• Perform maximum-likelihood fit in bins of $m_{3\pi}$ ("mass-independent fit")

- Decompose data into partial waves
- \blacktriangleright Extract $m_{3\pi}$ dependence of partial-wave amplitudes

Partial-Wave Analysis Model Building

$$\mathcal{I}(au) = \left|\sum_{i}^{\mathsf{waves}} \mathcal{T}_{i} \psi_{i}(au) \right|^{2}$$

Wave Set

- ▶ 88 partial waves for $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$
 - Largest wave set used so far in PWA of 3π final state
 - Spin J up to 6
 - Angular momentum L up to 6
 - 6 different $\pi^-\pi^+$ isobars

Challenge: Construction of the partial-wave set

Semi-automatized model selection from data:

- Starting with a large pool of possible waves
- Find the best subset of waves that describe the data
 - Adding a penalty term to the log-likelihood, which suppresses small intensities
- Challenge: Shape of the penalty term, parameter tuning, ...

Work in progress

$$\mathcal{I}(au) = \left|\sum_{i}^{\text{waves}} \mathcal{T}_{i} \psi_{i}(au) \right|^{2}$$

Wave Set

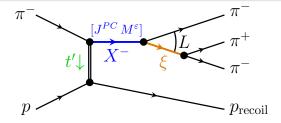
- ▶ 88 partial waves for $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$
 - Largest wave set used so far in PWA of 3π final state
 - Spin J up to 6
 - Angular momentum L up to 6
 - 6 different $\pi^-\pi^+$ isobars

Challenge: Construction of the partial-wave set

- Semi-automatized model selection from data:
 - Starting with a large pool of possible waves
 - Find the best subset of waves that describe the data
 - Adding a penalty term to the log-likelihood, which suppresses small intensities
 - Challenge: Shape of the penalty term, parameter tuning, ...

Work in progress

[Adolph et al., PRD 95, 032004 (2017)]

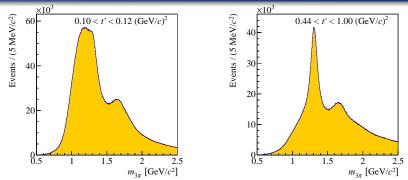


Challenge

Production also depends on t'

Large data set (≈ 50 M exclusive events)
 Perform PWA also in narrow bins of t' (t'-resolved analysis)
 Extract me AND t' dependence of partial wave amplitudes

t' Binning



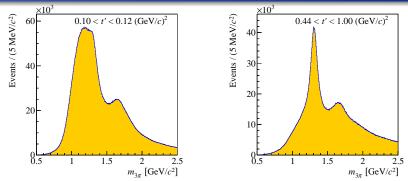
Challenge

Production also depends on t'

► Large data set (≈ 50 M exclusive events) ► Perform PWA also in narrow bins of t' (t'-resolved analysis)

Extract m_{3π} AND t' dependence of partial-wave amplitudes

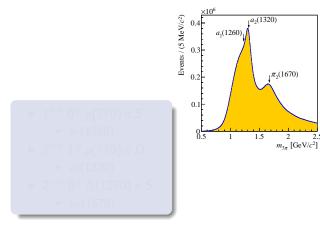
t' Binning



Challenge

- Production also depends on t'
- Large data set (\approx 50 M exclusive events)
 - Perform PWA also in narrow bins of t' (t'-resolved analysis)
 - Extract $m_{3\pi}$ **AND** t' dependence of partial-wave amplitudes

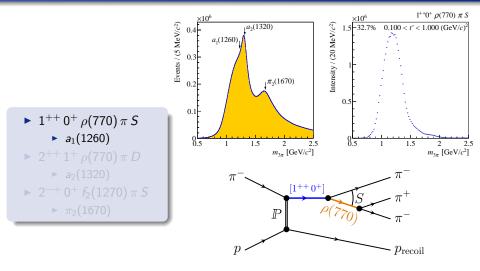
Partial-Wave Analysis Results



2.5

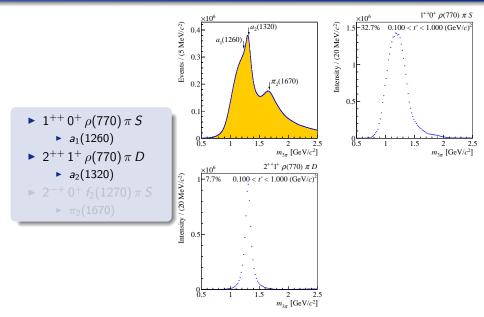
Partial-Wave Analysis Results

[Adolph et al., PRD 95, 032004 (2017)]



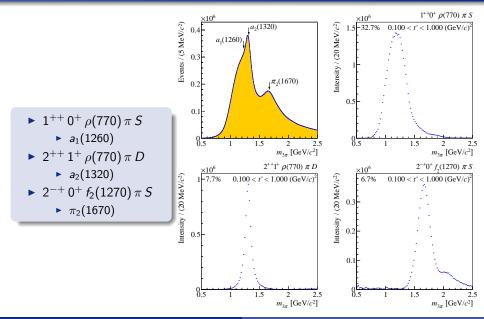
Partial-Wave Analysis Results

[Adolph et al., PRD 95, 032004 (2017)]



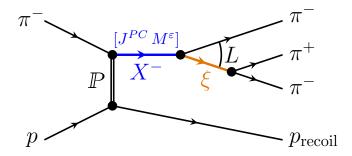
Partial-Wave Analysis Results

[Adolph et al., PRD 95, 032004 (2017)]



S. Wallner for the COMPASS Collaboration Hadron Spectroscopy at COMPASS

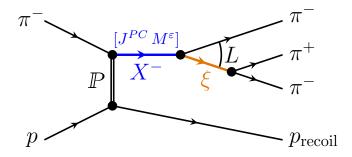
Partial-Wave Analysis Freed-Isobar Method



Challenge

- How good are the parameterizations?
 - Single isobar may not be approximated well by a Breit-Wigner amplitude
- Real shape may be complicated
- How good is the isobar model
 - Effects of rescattering?

Partial-Wave Analysis Freed-Isobar Method



Challenge

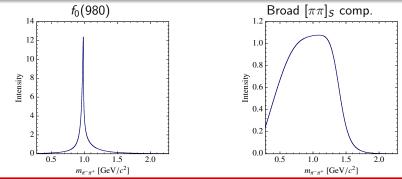
Needs knowledge of isobar amplitude

Single isobar may not be approximated well by a Breit-Wigner amplitude

Real shape may be complicated

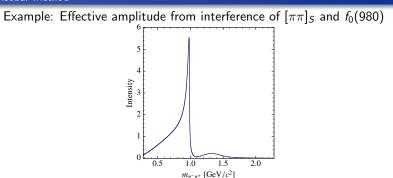
How good is the isobar model

Freed-Isobar Method



Challenge

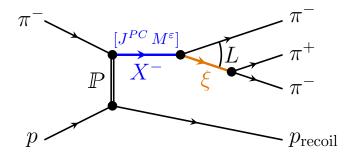
- How good are the parameterizations?
 - Single isobar may not be approximated well by a Breit-Wigner amplitude
- Real shape may be complicated
- How good is the isobar model
 - Effects of rescattering?



Challenge

- How good are the parameterizations?
 - Single isobar may not be approximated well by a Breit-Wigner amplitude
- Real shape may be complicated
- How good is the isobar model
 - Effects of rescattering?

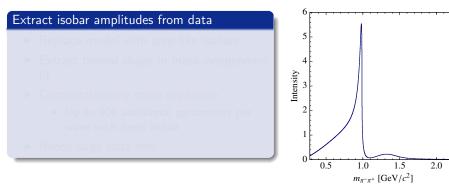
Partial-Wave Analysis Freed-Isobar Method



Challenge

- How good are the parameterizations?
 - Single isobar may not be approximated well by a Breit-Wigner amplitude
- Real shape may be complicated
- How good is the isobar model
 - Effects of rescattering?

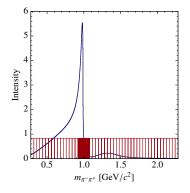
Effective amplitude from interference of $[\pi\pi]_S$ and $f_0(980)$



Effective amplitude from interference of $[\pi\pi]_S$ and $f_0(980)$

Extract isobar amplitudes from data

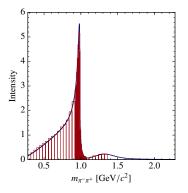
- Replace model with step-like isobars
- Extract binned shape in mass-independent fit
- Computationally more expensive
 - Up to 100 additional parameters per wave with freed isobar
- Needs large data sets



Effective amplitude from interference of $[\pi\pi]_S$ and $f_0(980)$

Extract isobar amplitudes from data

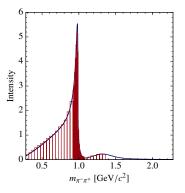
- Replace model with step-like isobars
- Extract binned shape in mass-independent fit
- Computationally more expensive
 - Up to 100 additional parameters per wave with freed isobar
- Needs large data sets



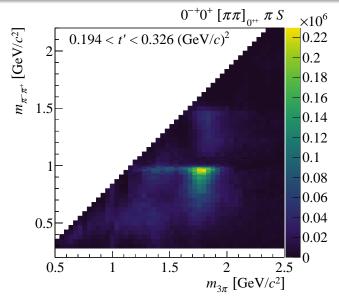
Effective amplitude from interference of $[\pi\pi]_S$ and $f_0(980)$

Extract isobar amplitudes from data

- Replace model with step-like isobars
- Extract binned shape in mass-independent fit
- Computationally more expensive
 - Up to 100 additional parameters per wave with freed isobar
- Needs large data sets

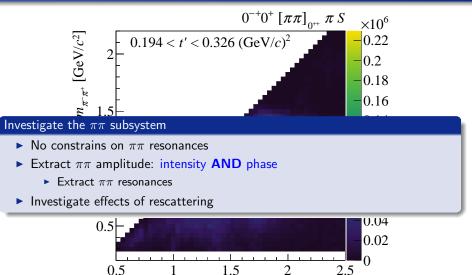


Partial-Wave Analysis Freed-Isobar Method



This is not a Dalitz-plot

Partial-Wave Analysis



 $m_{3\pi}$ [GeV/c²]

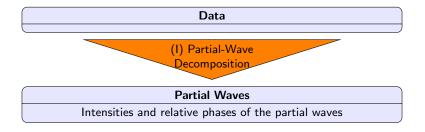
This is not a Dalitz-plot

12/22

Data

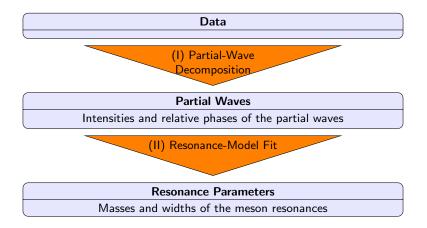
Resonance Parameters

Masses and widths of the meson resonances



Resonance Parameters

Masses and widths of the meson resonances



Modeling $m_{3\pi}$ dependence

 Parameterize m_{3π} dependence of partial-wave amplitude (intensity & phase)

$$\mathcal{T}_{\alpha}(m_{3\pi},t') = \sum_{k \in \operatorname{Comp}_{\alpha}} \mathcal{C}_{\alpha}^{k}(t') \cdot \mathcal{D}^{k}(m_{3\pi},t';\zeta_{k})$$

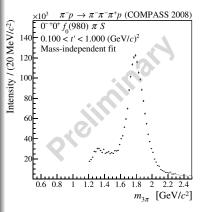
Dynamic functions $\mathcal{D}^{k}(m_{3\pi}, t'; \zeta_{k})$

For resonances: Breit-Wigner amplitude

 For non-resonant term: Phenomenological parameterization

• "Coupling amplitudes" $\mathcal{C}^k_lpha(t')$

- Determine strength and phase of components
- Independent coupling amplitude for each t' bin



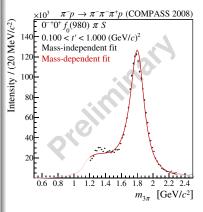
Modeling $m_{3\pi}$ dependence

 Parameterize m_{3π} dependence of partial-wave amplitude (intensity & phase)

$$\mathcal{T}_{\alpha}(m_{3\pi},t') = \sum_{k \in \operatorname{Comp}_{\alpha}} \mathcal{C}_{\alpha}^{k}(t') \cdot \mathcal{D}^{k}(m_{3\pi},t';\zeta_{k})$$

Dynamic functions $\mathcal{D}^k(m_{3\pi}, t'; \zeta_k)$

- For resonances: Breit-Wigner amplitude
- For non-resonant term: Phenomenological parameterization
- "Coupling amplitudes" $\mathcal{C}^k_lpha(t')$
 - Determine strength and phase of components
 - Independent coupling amplitude for each t' bin



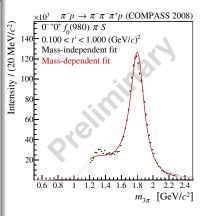
Modeling $m_{3\pi}$ dependence

 Parameterize m_{3π} dependence of partial-wave amplitude (intensity & phase)

$$\mathcal{T}_{\alpha}(m_{3\pi},t') = \sum_{k \in \operatorname{Comp}_{\alpha}} \mathcal{C}_{\alpha}^{k}(t') \cdot \mathcal{D}^{k}(m_{3\pi},t';\zeta_{k})$$

• Dynamic functions $\mathcal{D}^k(m_{3\pi}, t'; \zeta_k)$

- For resonances: Breit-Wigner amplitude
- For non-resonant term: Phenomenological parameterization
- "Coupling amplitudes" $\mathcal{C}^k_lpha(t')$
 - Determine strength and phase of components
 - Independent coupling amplitude for each t' bin



Modeling $m_{3\pi}$ dependence

 Parameterize m_{3π} dependence of partial-wave amplitude (intensity & phase)

$$\mathcal{T}_{\alpha}(m_{3\pi},t') = \sum_{k \in \operatorname{Comp}_{\alpha}} \mathcal{C}_{\alpha}^{k}(t') \cdot \mathcal{D}^{k}(m_{3\pi},t';\zeta_{k})$$

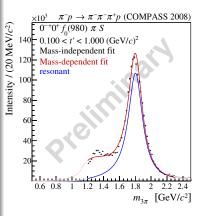
• Dynamic functions $\mathcal{D}^k(m_{3\pi}, t'; \zeta_k)$

► For resonances: Breit-Wigner amplitude

 For non-resonant term: Phenomenological parameterization

• "Coupling amplitudes" $\mathcal{C}^k_lpha(t')$

- Determine strength and phase of components
- Independent coupling amplitude for each t' bin



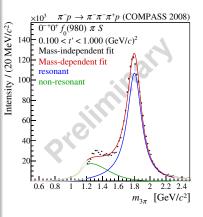
Modeling $m_{3\pi}$ dependence

 Parameterize m_{3π} dependence of partial-wave amplitude (intensity & phase)

$$\mathcal{T}_{\alpha}(m_{3\pi},t') = \sum_{k \in \operatorname{Comp}_{\alpha}} \mathcal{C}_{\alpha}^{k}(t') \cdot \mathcal{D}^{k}(m_{3\pi},t';\zeta_{k})$$

• Dynamic functions $\mathcal{D}^k(m_{3\pi}, t'; \zeta_k)$

- ► For resonances: Breit-Wigner amplitude
- For non-resonant term: Phenomenological parameterization
- "Coupling amplitudes" $\mathcal{C}^k_lpha(t')$
 - Determine strength and phase of components
 - Independent coupling amplitude for each t' bin



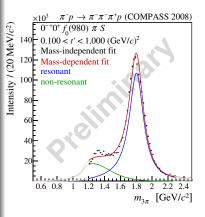
Modeling $m_{3\pi}$ dependence

 Parameterize m_{3π} dependence of partial-wave amplitude (intensity & phase)

$$\mathcal{T}_{\alpha}(m_{3\pi},t') = \sum_{k \in \operatorname{Comp}_{\alpha}} \mathcal{C}_{\alpha}^{k}(t') \cdot \mathcal{D}^{k}(m_{3\pi},t';\zeta_{k})$$

• Dynamic functions $\mathcal{D}^k(m_{3\pi}, t'; \zeta_k)$

- For resonances: Breit-Wigner amplitude
- For non-resonant term: Phenomenological parameterization
- "Coupling amplitudes" $\mathcal{C}^k_{\alpha}(t')$
 - Determine strength and phase of components
 - Independent coupling amplitude for each t' bin

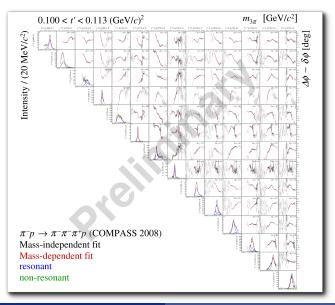


The fit

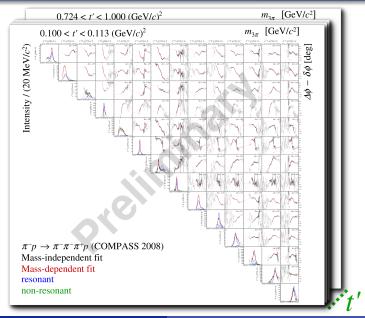
- Describe large fraction of data consistently
 - Simultaneously fit 14 waves (\approx 60 %)
 - Including 11 resonance components (a_1 , a_2 , a_4 , π , π_1 , π_2)

Computationally very expensive

- 14 \times 14 spin-density matrix \times 11 t' bins
- 76505 data points
- 722 real fit parameters (51 shape parameters)
- Multimodality: Fit result depends on start-parameter set and fitting procedure
 - Perform 1000 fit attempts
 - ▶ 30 000 CPUh for one fit result



$\underset{\mathsf{Method}}{\mathsf{Resonance-Model Fit}}$



The fit

- Describe large fraction of data consistently
 - Simultaneously fit 14 waves (\approx 60 %)
 - Including 11 resonance components (a_1 , a_2 , a_4 , π , π_1 , π_2)
- Extract t' dependence of model components
- Computationally very expensive
 - 14×14 spin-density matrix $\times 11 t'$ bins
 - ► 76 505 data points
 - ▶ 722 real fit parameters (51 shape parameters)
- ► Multimodality: Fit result depends on start-parameter set and fitting procedure
 - Perform 1000 fit attempts
 - 30 000 CPUh for one fit result

The fit

- Describe large fraction of data consistently
 - Simultaneously fit 14 waves (\approx 60 %)
 - Including 11 resonance components (a_1 , a_2 , a_4 , π , π_1 , π_2)
- Extract t' dependence of model components
- Computationally very expensive
 - 14×14 spin-density matrix $\times 11 t'$ bins
 - 76 505 data points
 - ▶ 722 real fit parameters (51 shape parameters)
- ► Multimodality: Fit result depends on start-parameter set and fitting procedure
 - Perform 1000 fit attempts
 - 30 000 CPUh for one fit result

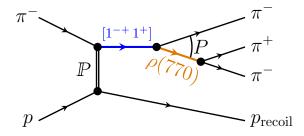
Challenge: Many systematic effects may influence the fit result

- Included resonances and non-resonant terms
- Parameterization of resonances and non-resonant terms
- Selected subset of waves
- Fitting ranges
- • •
- ► Systematic uncertainties one order of magnitude larger than statistical ones
- Performed more than 200 systematic studies to
 - improve the resonance model
 - determine the systematic uncertainties of extracted parameters
- Computationally expensive and time consuming

Challenge: Many systematic effects may influence the fit result

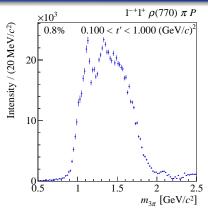
- Included resonances and non-resonant terms
- Parameterization of resonances and non-resonant terms
- Selected subset of waves
- Fitting ranges
- ▶ ...
- ► Systematic uncertainties one order of magnitude larger than statistical ones
- Performed more than 200 systematic studies to
 - improve the resonance model
 - determine the systematic uncertainties of extracted parameters
- Computationally expensive and time consuming

Partial-Wave Decomposition



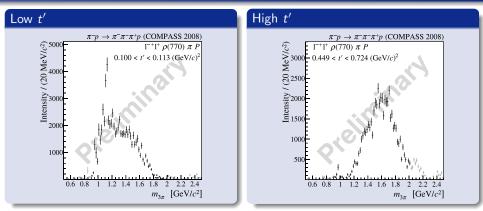
- ▶ 1^{-+} : spin-exotic π_1 -like quantum numbers
 - Forbidden quantum numbers for $q\bar{q}$ system (non-rel.)
 - ▶ Lattice-QCD: lightest hybrid predicted with 1⁻⁺ quantum numbers
- Broad intensity distribution
- Strong evolution with t'

Partial-Wave Decomposition

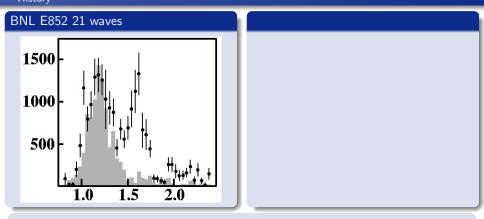


- ▶ 1^{-+} : spin-exotic π_1 -like quantum numbers
 - Forbidden quantum numbers for $q\bar{q}$ system (non-rel.)
 - ► Lattice-QCD: lightest hybrid predicted with 1⁻⁺ quantum numbers
- Broad intensity distribution
 - Strong evolution with t'

Partial-Wave Decomposition

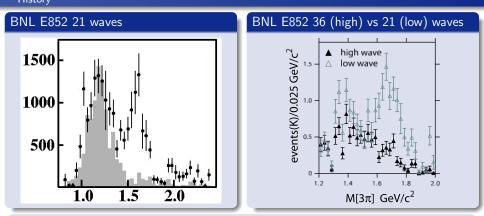


- 1^{-+} : spin-exotic π_1 -like quantum numbers
 - Forbidden quantum numbers for $q\bar{q}$ system (non-rel.)
 - Lattice-QCD: lightest hybrid predicted with 1⁻⁺ quantum numbers
- Broad intensity distribution
- Strong evolution with t'

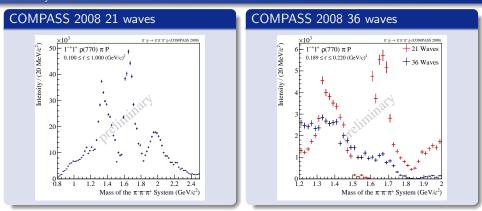


► Narrow peak in BNL E852 publication at 1.6 GeV/c² [Chung S., Phys.Rev. D65 (2002)]

- ▶ No peak in later BNL E852 publication using more data [Dzierba A., Phys.Rev. D73 (2006)
- Main features reproduced in COMPASS data using the same model
- Similar results in analysis of VES data [Zaitsev A., Nucl.Phys A675 (2000) 155C-160C]
- Strongest evidence for possible $\pi_1(1600)$ in high-t' region



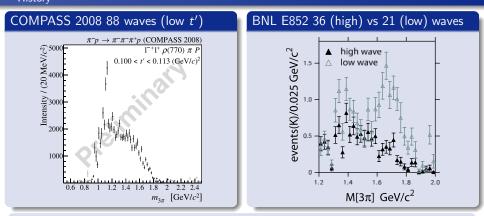
- ▶ Narrow peak in BNL E852 publication at $1.6 \, \text{GeV}/c^2$ [Chung S., Phys.Rev. D65 (2002)]
- ► No peak in later BNL E852 publication using more data [Dzierba A., Phys.Rev. D73 (2006)]
- Main features reproduced in COMPASS data using the same model
- Similar results in analysis of VES data [Zaitsev A., Nucl.Phys A675 (2000) 155C-160C]
- Strongest evidence for possible $\pi_1(1600)$ in high-t' region



- ▶ Narrow peak in BNL E852 publication at $1.6 \, \text{GeV}/c^2$ [Chung S., Phys.Rev. D65 (2002)]
- ► No peak in later BNL E852 publication using more data [Dzierba A., Phys.Rev. D73 (2006)]
- Main features reproduced in COMPASS data using the same model
- Similar results in analysis of VES data [Zaitsev A., Nucl.Phys A675 (2000) 155C-160C]
- Strongest evidence for possible $\pi_1(1600)$ in high-t' region

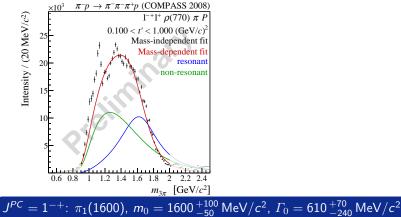


- ▶ Narrow peak in BNL E852 publication at $1.6 \, \text{GeV}/c^2$ [Chung S., Phys.Rev. D65 (2002)]
- ► No peak in later BNL E852 publication using more data [Dzierba A., Phys.Rev. D73 (2006)]
- Main features reproduced in COMPASS data using the same model
- Similar results in analysis of VES data [Zaitsev A., Nucl.Phys A675 (2000) 155C-160C]
- Strongest evidence for possible $\pi_1(1600)$ in high-t' region



- ► Narrow peak in BNL E852 publication at 1.6 GeV/c² [Chung S., Phys.Rev. D65 (2002)]
- ► No peak in later BNL E852 publication using more data [Dzierba A., Phys.Rev. D73 (2006)]
- Main features reproduced in COMPASS data using the same model
- Similar results in analysis of VES data [Zaitsev A., Nucl.Phys A675 (2000) 155C-160C]
- Strongest evidence for possible $\pi_1(1600)$ in high-t' region

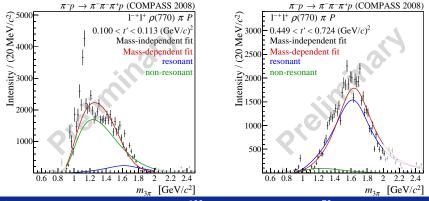
Resonance-Model Fit



- Large non-resonant contribution in spin-exotic 1^{-+} wave, but ...

- ▶ No description of data without Breit-Wigner component in $1^{-+} 1^+ \rho(770) \pi P$

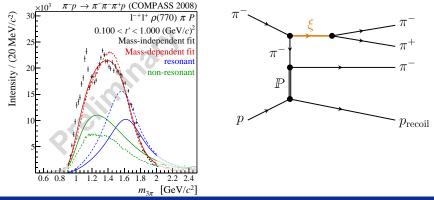
Resonance-Model Fit



$J^{PC}=1^{-+}$: $\pi_1(1600)$, $m_0=1600^{+100}_{-50}~{ m MeV}/c^2$, $\Gamma_0=610^{+70}_{-240}~{ m MeV}/c^2$

- Large non-resonant contribution in spin-exotic 1⁻⁺ wave, but ...
- Strong modulation with t' can be exploited in t'-resolved analysis
- Result in qualitative agreement with simple Deck-MC studies
- No description of data without Breit-Wigner component in $1^{-+} 1^+ \rho(770) \pi P$

Resonance-Model Fit

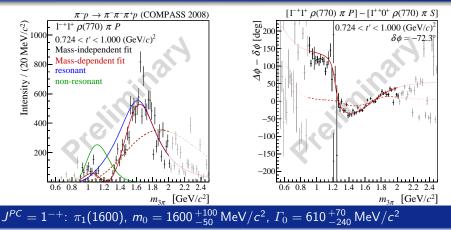


$J^{PC} = 1^{-+}$: $\pi_1(1600)$, $m_0 = 1600 {+100 \atop -50} { m MeV}/c^2$, $\Gamma_0 = \overline{610 {+70 \atop -240}} { m MeV}/c^2$

- Large non-resonant contribution in spin-exotic 1⁻⁺ wave, but ...
- ▶ Strong modulation with t' can be exploited in t'-resolved analysis
- Result in qualitative agreement with simple Deck-MC studies

No description of data without Breit-Wigner component in $1^{-+} 1^+
ho(770) \pi P$

Resonance-Model Fit



- Large non-resonant contribution in spin-exotic 1⁻⁺ wave, but ...
- ▶ Strong modulation with t' can be exploited in t'-resolved analysis
- Result in qualitative agreement with simple Deck-MC studies
- No description of data without Breit-Wigner component in $1^{-+} 1^+ \rho(770) \pi P$

Summary & Outlook

Resonance-model fits

- Extract Breit-Wigner masses and widths with high statistical precision
- ▶ Model yields consistent description of 14 partial wave amplitudes
- Extract t' dependence of model components
- Uncertainties dominated by systematic effects

$J^{PC}=1^{-+}$ partial wave

- Large non-resonant contribution
 - Large systematic uncertainties e.g. from non-resonant parameterization
- Strong modulation with t'
 - Improved separation of resonance and non-resonant contribution
- ► COMPASS data is consistent with $\pi_1(1600)$ Breit-Wigner component plus non-resonant term

Outlook

[arXiv:1707.02848]

- ► Further studies of selected *J^{PC}* sectors
- Advanced parameterizations developed in collaboration with JPAC

Summary & Outlook

Resonance-model fits

- Extract Breit-Wigner masses and widths with high statistical precision
- Model yields consistent description of 14 partial wave amplitudes
- Extract t' dependence of model components
- Uncertainties dominated by systematic effects

$J^{PC} = 1^{-+}$ partial wave

- Large non-resonant contribution
 - ► Large systematic uncertainties e.g. from non-resonant parameterization
- Strong modulation with t'
 - ► Improved separation of resonance and non-resonant contribution
- ► COMPASS data is consistent with π₁(1600) Breit-Wigner component plus non-resonant term

Outlook

[arXiv:1707.02848]

- ► Further studies of selected *J^{PC}* sectors
- Advanced parameterizations developed in collaboration with JPAC

Summary & Outlook

Resonance-model fits

- Extract Breit-Wigner masses and widths with high statistical precision
- Model yields consistent description of 14 partial wave amplitudes
- Extract t' dependence of model components
- Uncertainties dominated by systematic effects

$J^{PC} = 1^{-+}$ partial wave

- Large non-resonant contribution
 - ► Large systematic uncertainties e.g. from non-resonant parameterization
- Strong modulation with t'
 - ► Improved separation of resonance and non-resonant contribution
- ► COMPASS data is consistent with π₁(1600) Breit-Wigner component plus non-resonant term

Outlook

[arXiv:1707.02848]

- Further studies of selected J^{PC} sectors
- Advanced parameterizations developed in collaboration with JPAC

Freed-isobar method

- Allows to study the $\pi\pi$ sub-system
 - As a function of the $X^- J^{PC}$ and mass
- Needs large data sets
- Outlook:
 - Free more partial waves with different isobar-J^{PC}
 - Appearance of continuous ambiguities
 - Resolved by additional constrains

Semi-automatized model selection from data

- Allows to define the wave set with minimal bias
- Which kind of penalty term to use?
- Outlook:
 - First application to 5π and 3π final state
 - Extensive studies of different penalty terms on Monte Carlo data

Freed-isobar method

- Allows to study the $\pi\pi$ sub-system
 - As a function of the $X^- J^{PC}$ and mass
- Needs large data sets
- Outlook:
 - Free more partial waves with different isobar-J^{PC}
 - Appearance of continuous ambiguities
 - Resolved by additional constrains

Semi-automatized model selection from data

- Allows to define the wave set with minimal bias
- Which kind of penalty term to use?
- Outlook:
 - First application to 5π and 3π final state
 - Extensive studies of different penalty terms on Monte Carlo data

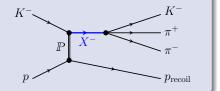
Further Analysis Projects

Further diffractively produced final states

$$\eta\pi^-$$
, $\eta'\pi^-$, $\omega\pi^-\pi^0$, ...

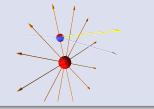
Kaon diffraction

- ▶ Using 2 % K⁻ beam
- Study of kaonic resonances in e.g. K[−]π[−]π⁺ final state



$\pi^-\gamma$ and $K^-\gamma$ Processes (Primakoff)

- Measurement of electric and magnetic polarisability of pions and kaons
- Study of chiral dynamics
- Measurement of radiative couplings



Backup

Outline