Accessing the proton's tensor structure in inclusive DIS

Alberto Accardi

Hampton U. and Jefferson Lab

EIC Users Group Meeting 2017 Trieste – July 21st, 2017

In collaboration with A.Bacchetta – arXiv:1706.02000

Why jet correlators?

Quarks are not asymptotic states

- More mass than m_a produced in the current region!
 - "Jet mass corrections" \rightarrow *Accardi, Qiu, JHEP 2008*
 - Novel contributions to inclusive DIS structure functions

 \rightarrow Accardi, Bacchetta, arXiv:1706.02000

Collinear factorization with "jet correlators"

- Jet correlators, "jet mass" Mq, and new TMD sum rules
- Transversity accessible in LT inclusive asymmetries:
 - New, large contribution to g₂(x)
 - Non-perturbative extension of BC sum rule
- **Some phenomenological consequences**
- 🗋 Outlook

Collinear Factorization with Jet Correlators

TMDs in spin ½ targets

 \rightarrow P. Mulders, QCDev2017

Integrated (collinear) correlator: only circled ones survive

- Christ-Lee theorem (1970): *h*₁ not observable in inclusive DIS
- Not quite true:
 - Vacuum fluctuations can flip the spin of the struck quark

Large contribution h_1 pops up in the $g_2 - g_2^{WW}$ structure function

Measuring g₂

Need to measure double L-T spin asymmetry in inclusive DIS

g, structure function - standard analysis

AA, Bacchetta, Melnitchouk, Schlegel, 2009 Jaffe, Ji, 1991

$$W_{\mu\nu} = i_{\mu\nu\lambda\sigma} \frac{q^{\lambda}}{p \cdot q} \left[g_1 S^{\sigma} + g_2 \left(S^{\sigma} - p^{\sigma} \frac{q \cdot S}{q \cdot p} \right) \right]$$

$$g_{2}(x_{B}) - g_{2}^{WW}(x_{B}) = g_{2}^{tw3}(x_{B}) + \frac{m_{q}}{M} \left(\frac{h_{1}}{x}\right)^{*}(x_{B})$$

$$(x_{B})$$

$$(y_{andzura-Wilczeck})$$

$$(y_{andzura-$$

accardi@jlab.org

EICUG – Trieste – July 21st, 2017

g₂ moments - standard analysis

Burkhardt-Cottingham sum rule

$$\int_0^1 dx \, g_2(x) = 0$$

Unless g_2^{tw3} pathological at large distances, or J=0 pole contributions ~ $\delta(x) \rightarrow Jaffe, Ji$ '91 $\rightarrow Burkardt, Koike, '02$

... or large spin-flip contributions \rightarrow *Burkhardt, Cottingham '70*

□ "pure twist-3" effects, e.g.,
Color force experienced by struck quark → M.Burkardt

$$d_{2} \equiv \int_{0}^{1} dx \, x^{2} [g_{2}(x) - g_{2}^{WW}(x)]$$

= $3g_{2}[2] + 2g_{1}[1] \sim \langle P | \bar{\psi} \gamma^{+} F^{+\alpha} \psi | P \rangle$

Inclusive DIS with jet correlators

AA, Bacchetta, arXiv:1706.02000

Jet correlators

Factorization

 \square At order 1/Q , neglect k^- compared to q^-

 The cross section depends only on the **integrated jet correlator**

$$\Xi(l^-, \boldsymbol{l}_T) \equiv \int \frac{dl^2}{2l^-} \Xi(l) = \frac{\Lambda}{2l^-} \xi_1 \mathbf{1} + \xi_2 \frac{\not{n}_-}{2} + \text{ h.t. terms}$$

Coefficients can be interpreted in terms of quark spectral functions:

 $\xi_1 = \int d\mu^2 \frac{\mu}{\Lambda} J_1(\mu^2) \equiv \underbrace{\frac{M_q}{\Lambda}}_{\longrightarrow} \underbrace{\text{Spin-flip average "jet" mass}}_{\longrightarrow} \underbrace{\text{can couple to transversity!}}_{\xi_2} = \int d\mu^2 J_2(\mu^2) = 1 \quad \longleftarrow \quad \text{Exactly, due to CPT invariance}$

Positivity constraints imply

$$0 < M_q < \int d\mu^2 \mu J_2(\mu^2) \implies M_q = O(100 \text{ MeV})$$
 Much larger than $m_q!$

accardi@jlab.org

Full twist-3 analysis

Convenient and instructive to integrate the SIDIS tensor

$$W^{\mu\nu}(x_B) = \sum_{h} \int dz \, d^2 p_{hT} \, z \, W^{\mu\nu}_h(z, p_{hT}, x_B)$$

The piece of the SIDIS tensor with jet mass contributions is

[Bacchetta et al, JHEP 2007]

$$2\Lambda W^{\mu\nu} = i \frac{2\Lambda}{Q} \hat{t}^{[\mu} \epsilon_{\perp}^{\nu]\rho} S_{\perp\rho} \\ \times \sum_{q} e_{q}^{2} \left[2x_{B} g_{T}^{q}(x_{B}) D_{1}^{q,h}(z, p_{hT}) + 2h_{1}^{q}(x_{B}) \tilde{E}^{q,h}(z, p_{hT}) \right] + \dots$$

Where e.o.m. relate the twist-3 TMD-FF \tilde{E} to twist-2 TMD-FFs :

$$\tilde{E} = E - \frac{m_q}{\Lambda} z D_1$$
 Current quark mass ~ few MeV

Jet and TMD sum rules

Utilize the following jet correlator sum rule:

 \rightarrow AA, Bacchetta, arXiv:1706.02000

At TMD level, this implies:

$$\sum_{h} \int dz d^{2} p_{hT} z D_{1}^{h}(z, p_{hT}) = \xi_{2} = 1$$

$$\sum_{h} \int dz d^{2} p_{hT} E^{h}(z, p_{hT}) = \xi_{1} = \underbrace{\frac{M_{q}}{\Lambda}}_{M_{q}^{\text{pert}}} \qquad \text{Novel TMD sum rules}$$

$$\sum_{h} \int dz d^{2} p_{hT} \tilde{E}^{q,h}(z, p_{hT}) = \underbrace{\frac{M_{q} - m_{q}}{\Lambda}}_{M_{q}^{\text{pert}}} \qquad M_{q}^{\text{pert}} = m_{q} \Rightarrow \text{ Old ones}$$

accardi@jlab.org

Finally, the DIS cross section

Inclusive DIS
$$\frac{d\sigma}{dx_B \, dy \, d\phi_S} \propto \left\{ F_T + \varepsilon F_L + S_{\parallel} \lambda_e \sqrt{1 - \varepsilon^2} \, F_{LL} + |S_{\perp}| \lambda_e \sqrt{2 \, \varepsilon (1 - \varepsilon)} \, \cos \phi_S \, F_{LT}^{\cos \phi_S} \right\}$$

Structure functions:

$$F_{T} = x_{B} \sum_{q} e_{q}^{2} f_{1}^{q}(x_{B})$$

$$F_{L} = 0$$

$$F_{LL} = x_{B} \sum_{q} e_{q}^{2} g_{1}^{q}(x_{B})$$

$$F_{LT}^{\cos \phi_{S}} = -x_{B} \sum_{q} e_{q}^{2} \frac{2M}{Q} \left(x_{B} g_{T}^{q}(x_{B}) + \underbrace{\frac{M_{q} - m_{q}}{M} h_{1}^{q}(x_{B})}{M} \right)$$

Finally, the DIS cross section

$$\Box \text{ Inclusive DIS } \frac{d\sigma}{dx_B \, dy \, d\phi_S} \propto \left\{ F_T + \varepsilon F_L + S_{\parallel} \lambda_e \sqrt{1 - \varepsilon^2} \, F_{LL} + |S_{\perp}| \lambda_e \sqrt{2 \, \varepsilon (1 - \varepsilon)} \, \cos \phi_S \, F_{LT}^{\cos \phi_S} \right\}$$

Structure functions:

$$F_T = x_B \sum_q e_q^2 f_1^q(x_B)$$
$$F_L = 0$$

$$F_{LL} = x_B \sum_{q} e_q^2 g_1^q(x_B)$$

$$F_{LT}^{\cos\phi_S} = -x_B \sum_{q} e_q^2 \frac{2M}{Q} \left(x_B g_T^q(x_B) + \frac{M_q - m_q}{M} h_1^q(x_B) \right)$$

Transversity in inclusive DIS!

EICUG – Trieste – July 21st, 2017

Finally, the DIS cross section

	Inclusive DI	$S = \frac{d\sigma}{d\sigma}$	$\propto \left\{ F_T + \varepsilon F_L + S_{\parallel} \lambda_e \sqrt{1 - \varepsilon^2} F_L \right\}$	Ś
	Deliverables	Observables	What we learn	illider: rontier g the glue inds us all
	Sivers &	SIDIS with	Quantum Interference & Spin-Orbital	2016
	unpolarized	Transverse	3D Imaging of quark's motion: valence $+$ sea	2010
[TMD quarks	polarization;	3D Imaging of gluon's motion	
	and gluon	di-hadron (di-jet)	QCD dynamics in a unprecedented Q^2 (P_{hT}) range	
ſ	Chiral-odd	SIDIS with	$3^{\rm rd}$ basic quark PDF: valence + sea, tensor charge	
	functions:	Transverse	Novel spin-dependent hadronization effect	
	Transversity;	polarization	QCD dynamics in a chiral-odd sector	
	Boer-Mulders		with a wide Q^2 (P_{hT}) coverage	and a

Table 2.2: Science Matrix for TMD: 3D structure in transverse momentum space: (up, golden measurements; (lower) the silver measurements.

$$F_{LT}^{\cos\phi_S} = -x_B \sum_{q} e_q^2 \frac{2M}{Q} \left(x_B g_T^q(x_B) + \frac{M_q - m_q}{M} h_1^q(x_B) \right)$$

Transversity in inclusive DIS!

EICUG – Trieste – July 21st, 2017

Some phenomenological consequences

g2 structure function revisited

Using EOM, Lorentz Invariance Relations, can show that

$$g_{2}(x_{B}) - g_{2}^{WW}(x_{B}) \equiv g_{2}^{quark} \equiv g_{2}^{jet}$$

$$= \frac{1}{2} \sum_{a} e_{a}^{2} \left(g_{2}^{q,\text{tw3}}(x_{B}) + \frac{m_{q}}{M} \left(\frac{h_{1}^{q}}{x} \right)^{\star} (x_{B}) + \frac{M_{q} - m_{q}}{M} \frac{h_{1}^{q}(x_{B})}{M} \right)$$
Color force distribution
Color force distribution
Transversity in inclusive DIS!

Consequences:

- h1 accessible in inclusive DIS! \leftrightarrow Potentially large signal
- new background to extraction of qGq effects

$$f^*(x) = -f(x) + \int_x^1 \frac{dy}{y} f(y)$$

g2 structure function revisited

Using EOM, Lorentz Invariance Relations, can show that

Accardi, Bacchetta – in preparation

 \Box Taking moments of g2 with $M_u \approx M_d \equiv M_{jet}$

Burkardt-Cottingham

$$\int_{0}^{1} g_{2}(x) = M_{\text{"jet"}} \int_{0}^{1} dx \, \frac{h_{1}(x)}{x}$$

 \rightarrow unlikely to still be zero!

 \rightarrow <u>if</u> BC broken by finite amount, constrains:

 $h_1^q(x) \propto x^{\epsilon} \quad \epsilon > 0$

Accardi, Bacchetta – in preparation

 \Box Taking moments of g2 with $M_u \approx M_d \equiv M_{jet}$

Burkardt-Cottingham

$$\int_{0}^{1} g_{2}(x) = M_{\text{"jet"}} \int_{0}^{1} dx \, \frac{h_{1}(x)}{x}$$

 \rightarrow unlikely to still be zero!

 \rightarrow <u>if</u> BC broken by finite amount, constrains:

 $h_1^q(x) \propto x^{\epsilon} \quad \epsilon > 0$

 $\rightarrow \underline{\text{Small-x asymptotics}}: \qquad \rightarrow \underline{\text{Kovchegov, Pitonyak, Sievert}} \\ g_1^{NS} \sim x^{\epsilon_g} \quad \epsilon_g = -\sqrt{\alpha_s N_c/\pi} \approx -0.6 \qquad \underline{\text{PRD}(2017)93}$

But h₁ is also non-singlet, expect

$$h_1 \sim x^{\epsilon_h} \quad \epsilon_h = \epsilon_g < 0!!$$

– Is BC badly broken? 1/Nc corrections non negligible? Or ...?

Accardi, *Bacchetta* – *in preparation*

Taking moments of g2 with $M_u \approx M_d \equiv M_{jet}$

Burkardt-Cottingham

$$\int_{0}^{1} g_{2}(x) = M_{\text{"jet"}} \int_{0}^{1} dx \, \frac{h_{1}(x)}{x}$$

 \rightarrow unlikely to still be zero!

 \rightarrow if BC broken by finite amount, constrains:

$$h_1^q(x) \propto x^{\epsilon} \quad \epsilon > 0$$

Accardi, Bacchetta – in preparation

 \square Taking moments of g2 with $M_u \approx M_d \equiv M_{jet}$

Burkardt-Cottingham

$$\int_0^1 g_2(x) = M_{\text{"jet"}} \int_0^1 dx \, \frac{h_1(x)}{x}$$

Efremov-Teryaev-Leader

$$\int_{0}^{1} x g_{2}^{q-\bar{q}}(x) = 2 M_{"jet"} \underbrace{\int_{0}^{1} dx \, h_{1}^{q-\bar{q}}(x)}_{\text{Tensor charge } \delta_{T}}$$

 \rightarrow Novel way to measure the tensor charge!

 \rightarrow Bacchetta's talk

Accardi, Bacchetta – in preparation

 \square Taking moments of g2 with $M_u \approx M_d \equiv M_{jet}$

Burkardt-Cottingham

$$\int_{0}^{1} g_{2}(x) = M_{\text{"jet"}} \int_{0}^{1} dx \, \frac{h_{1}(x)}{x}$$

Efremov-Teryaev-Leader

$$\int_{0}^{1} xg_{2}^{q-\bar{q}}(x) = 2 M_{"jet"} \underbrace{\int_{0}^{1} dx \, h_{1}^{q-\bar{q}}(x)}_{\text{Tensor charge } \delta_{T}}$$

Color polarizability

$$\int_{0}^{1} \left[3x^{2}g_{2}(x) - 2x^{2}g_{1}(x) \right] = d_{2} + 3M_{"jet"} \int_{0}^{1} xh_{1}(x) + O(m_{q})$$
"pure twist-3"

Measuring the jet correlator

Related to confinement, mass generation $\rightarrow Roberts' talk$

e-e+ collisions: semi-inclusive A and di-hadron production

Universal fits:

→ AA parallel sessions also Ethier, Sato, Melnitchouk, 1705.05889

- Interplay of q, Δ q, δ q
- Leave M_{a} as a free parameter

Lattice QCD:

- How to measure M_{α} (or the jet functions J_i themselves)?
- Any relation to the quark condensate?

Where are we going?

Jet correlators open a novel and rich phenomenology

- New terms in old observables (tensor charge in DIS!)
- Signal enhancement in less studied channels
 - e.g. spin flip in single transverse target spin asymmetry
- New observables

Open theoretical questions

- Jet correlator effects in (interacting fields) OPE?
- Small x behavior and BC sum rule

Need new data:

p gk-p k

 \rightarrow Afanasiev et al., PRD77(2008) Schelegel, PRD87(2013)

Where are we going?

Jet correlators open a novel and rich phenomenology

Deliverables	Observables	What we learn	Electron Ion Collider: The Next QCD Frontier Understanding the glue that binds us all		
Sivers &	SIDIS with	Quantum Interference & Spin-Orbital			
unpolarized	Transverse	3D Imaging of quark's motion: valence $+$ set	ea		
TMD quarks	polarization;	3D Imaging of gluon's motion			
and gluon	di-hadron (di-jet)	QCD dynamics in a unprecedented Q^2 (P_{hT}) r	range		
Chiral-odd	SIDIS with	$3^{\rm rd}$ basic quark PDF: valence + sea, tensor ch	arge		
functions:	Transverse	Novel spin-dependent hadronization effect	ization effect		
Transversity;	polarization	n QCD dynamics in a chiral-odd sector			
Boer-Mulders		with a wide Q^2 (P_{hT}) coverage	(internet		

Table 2.2: Science Matrix for TMD: 3D structure in transverse momentum space: (uppedden measurements; (lower) the silver measurements.

- Small x: EIC - New asymmetries in e+e- \rightarrow hX M_q M_q M_q

Example: color polarizability

lacksim Need to subtract jet term to obtain "pure twist-3" $d_2\sim \langle ar q \gamma^+ F^{+y}q
angle$

$$d_{2} = \int_{0}^{1} dx \left[3x^{2}g_{2}(x) - 2x^{2}g_{1}(x) \right] - 3M_{"jet"} \int_{0}^{1} dx x h_{1}(x)$$
Data -> global fits (e.g. JAM15)
(in future also from lattice:
Chambers et al., arXiv:1703.01153)

Experiments
(what precision now, expected?)
Global fits (Pavia, Torino)
(Can use constraints from new sum rules)
Lattice ?

