Two-Photon Exchange Experiments: Present and Future

D.K. Hasell

|4ii

Hadronic Physics with Lepton and Hadron Beams CEBAF Center September 5–8, 2017

Introduction

 $\sim 100~{\rm years}$ ago Rutherford named the nucleus of hydrogen the proton

But there are still many puzzles remaining for this fundamental particle

- proton spin

C.A. Aidala et al., Reviews of Modern Physics, 85 (2013) 655-691

- proton mass

S. Dürr et al., Science, 322 (2008)1224-1227

- proton radius

R. Pohl et al., Annual Review of Nuclear and Particle Science, 63 (2013) 175-204

My talk addresses still another problem, namely the proton form factors

A. Afanasev et al., Progress in Particle and Nuclear Physics, 95 (2017) 245-274

Introduction

Problem with Form Factor Ratio $\mu_p G_E^p/G_M^p$ Measurements

Proposed Explanation

Two-Photon Exchange

Proposed Explanation - Two Photon Exchange (TPE)

Thought to be a small effect

- suppressed by order α
- "soft" radiative corrections included
- But "hard" TPE difficult
 - model dependent intermediate p, Δ , ...

Calculations suggest it can resolve the discrepancy

Need a definitive experiment

How to Measure "Hard" Two-Photon Contribution

Interference term has a factor z^3 , where z is the lepton charge

 \Rightarrow Interference term changes sign between e^+p and e^-p scattering

Definitive Measure of Two-Photon Contribution

Measure $\sigma_{e^+p} / \sigma_{e^-p}$ $\sigma_{e^+p} \qquad \mathcal{R}e(\mathcal{M}_{1\gamma}^{\dagger}\mathcal{M}$

 $\frac{\sigma_{e^+p}}{\sigma_{e^-p}}\approx 1{+}4\frac{\mathcal{R}e(\mathcal{M}_{1\gamma}^\dagger\mathcal{M}_{2\gamma})}{\mathcal{M}_{1\gamma}^2}$

Existing data

- low Q^2
- large uncertainties

Three recent experiments

- VEPP-3 Novosibirsk
- CLAS JLab
- OLYMPUS DESY

Radiative Corrections that Need to be Included

Radiative Corrections in Elastic Cross Section

Rebecca Russell, MIT

Even powers of z same for e^+p and e^-p scattering must be included

Radiative Corrections from Inelastic Processes

Rebecca Russell, MIT

Inelastic IR divergences cancel with elastic divergences

- must separate "hard" and "soft" parts in two-photon exchange
- "soft" part included in radiative corrections, "hard" part measured
- prescriptions defining "soft" e.g. Mo Tsai, Maximon Tjon

<u> ŚLYMPÙ</u>

VEPP-3

VEPP-3 Detector Configuration

Large acceptance, non-magnetic detector configuration

- same acceptance, efficiency for both electrons and positrons
- lepton and proton detected in coincidence
- forward angle measurement used for luminosity normalization

I.A. Rachek et al. Phys. Scr. T166 014017 (2015).

VEPP-3 Radiative Corrections

Dedicated event generator

- ESEPP
- full radiative corrections
- GEANT4 detector simulation

Sensitivity of ratio to radiative corrections

I.A. Rachek et al. Phys. Scr. T166 014017 (2015).

VEPP-3

VEPP-3 Results

 $E_{Beam} = 1.594 \,\, \mathrm{GeV}$

•••••	I. A. Qattan, et al.,
	P. G. Blunden, et al.,
	D. Borisyuk and A. Kobushkin,
	E. Tomasi-Gustafsson, et al.,
	J. Arrington and I. Sick,
	J. C. Bernauer, et al.,

 $E_{Beam} = 0.998 \,\,\mathrm{GeV}$

Phys. Rev. C 84 (2011) 054317 Phys. Rev. C 72 (2005) 034612 Phys. Rev. C 78 (2008) 025208 Phys. Atom. Nucl. 76 (2013) 937 Phys. Rev. C 70 (2004) 028203 Phys. Rev. C 90 (2014) 015206

I.A. Rachek et al. Phys. Rev. Lett. 114 062005 (2015).

CLAS

CLAS Detector Configuration

Must reconstruct beam energy by measuring both lepton and proton

D. Rimal et al. Phys. Rev. C95 065291 (2017).

DIMPL

CLAS Bins for ϵ Dependence

D. Rimal et al. Phys. Rev. C95 065291 (2017).

CLAS

CLAS

CLAS, VEPP-3, and Previous Results versus $\epsilon \epsilon$

D. Rimal et al. Phys. Rev. C95 065291 (2017).

<u>ÓD</u>MÁPC

CLAS

CLAS Bins for Q^2 Dependence

CLAS

CLAS, VEPP-3, and Previous Results versus $\epsilon \epsilon$

D. Rimal et al. Phys. Rev. C95 065291 (2017).

DIMPU

Detector Overview

Radiative Corrections in OLYMPUS

Dedicated event generator

- checked against ESEPP VEPP-3
- full radiative corrections
- GEANT4 detector simulation

Small differences between results with different "Soft" photon definitions

Some sensitivity to α^3 or exponentiation

B. Henderson et al. Phys. Rev. Lett. 118 092501 (2017).

OLYMPUS

OLYMPUS Results

B. Henderson et al. Phys. Rev. Lett. 118 092501 (2017).

Two-Photon Exchange

Comparing the three experiments

Comparing the Three Experiments - (ϵ,Q^2) Reach

Comparison with Blunden N + Δ

Comparing with calculations

Comparison with Blunden N + Δ

Comparison with Bernauer

Comparing with calculations

Comparison with Bernauer

D.K. Hasell

Should we be surprised ?

Should We be Surprised ?

Discrepancy in $\mu_p G^p_E/G^p_M$ at $Q^2 < 2.5~({\rm GeV/c})^2$

Summary of Experimental Results

 $R_{2\gamma}$ measured for $Q^2 < 2.3 \; ({\rm GeV/c})^2$

Radiative corrections and prescription for handling TPE important.

Small, < 1%, hard two-photon exchange observed

Evidence for effect increasing with increasing Q^2 (decreasing ϵ)

Results less than expected from theoretical calculations

In better agreement with phenomenological predictions

Further theoretical effort on radiative corrections needed

Experiments at higher energy required to resolve discrepancy

- When ? Where ?

Possible Future Two-Photon Experiments at JLab

CLAS12 ?

Positrons ?

- J. Grames (NSTAR2017), polarized positrons, 100 nA
- higher unpolarized positron current ?
- JPos17 September 12-15, JLab
 - good idea and not just for two-photon exchange
 - DVCS, full flavor decomposition of structure functions

Hall A

- 10 cm liquid hydrogen target
- HRS 6 msr

Event rate $\sim 1.6 \times 10^{-6}$ per second per femtobarn

Time to Measure $R_{2\gamma}$ at One Point in (ϵ, Q^2)

Time to collect 0.5 % statistics for both e^- and e^+ with 50% livetime

Possible Future Two-Photon Experiments at DESY

OLYMPUS 2 ?

Electrons and positrons available directly from DESY synchrotron

- 1-6 GeV electrons or positrons
- 30 nA
- higher current ?

Test hall

- 10 cm liquid hydrogen target
- high resolution, fine granularity calorimeter (PbWO₄) 10 msr
 - increase coverage with more calorimeter modules

Event rate $\sim 7.9 \times 10^{-7}$ per second per femtobarn

 $\sim 2 \times$ slower than JLab Hall A with HRS

Recent and Future Meetings

Two parallel session on experiment and theory of two-photon exchange

- NSTAR Conference, Columbia, SC, August 20-23

Hadronic Physics with Lepton and Hadron Beams

- JLab, Newport News, VA September 5-8

International Workshop on Physics with Positrons at Jefferson Lab

- JLab, Newport News, VA September 12–15

Workshop on Two-Boson Exchange

- UMass, Amherst, MA September 28-30

Thank You

Work supported by the United States Department of Energy.

Backup

Nucleon Form Factors

Nucleon Form Factors from Elastic Electron Scattering

One photon exchange approximation

$$\gamma^{\mu}F_1^N(Q^2) + i\sigma^{\mu\nu}q_{\nu}\frac{\kappa}{2M}F_2^N(Q^2)$$

Electric and magnetic form factors

$$G_E^N(Q^2) = F_1^N(Q^2) - \tau \kappa F_2^N(Q^2)$$

$$G_M^N(Q^2) = F_1^N(Q^2) + \kappa F_2^N(Q^2)$$

Rosenbluth cross section

$$\begin{split} \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left[\left(\frac{G_E^{N\,2} + \tau G_M^{N\,2}}{1 + \tau}\right) + 2\tau G_M^{N\,2} \tan^2 \frac{\theta}{2} \right] & \tau = \frac{Q^2}{4M_N^2} \\ \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \frac{\tau G_M^{N\,2} + \epsilon G_E^{N\,2}}{\epsilon(1 + \tau)} & \epsilon = \left(1 + 2(1 + \tau) \tan^2 \frac{\theta}{2}\right)^{-1} \end{split}$$

Form Factor Ratio $\mu_p G_E^p/G_M^p$ - Rosenbluth Technique

Measuring Form Factors - Polarized Techniques

Advent of polarized beams and targets provided another technique

In polarization transfer experiments $\vec{e}p \rightarrow e\vec{p}$

$$\mu_p \frac{G_E}{G_M} = -\mu_p \sqrt{\frac{\tau(1+\epsilon)}{2\epsilon}} \frac{P_T}{P_L} = -\mu_p \frac{E+E'}{2M_p} \tan \frac{\theta_e}{2} \frac{P_T}{P_L}$$

where P_T and P_L are the polarizations of the recoil proton.

This is a simpler and more accurate measurement for $\mu_p G_E/G_M$ particularly at higher Q^2

It is also possible to determine $\mu_p G_E/G_M$ from $\vec{e} \, \vec{p} \to e \, p$ by measuring the asymmetries (see Crawford 07).

Backup

Nucleon Form Factors

Discrepancy in Form Factor Ratio $\mu_p G_E^p/G_M^p$?

Measuring Form Factors - Rosenbluth Technique

I.A. Qattan, Phys. Rev. Lett. 94 (2005) 142301.

$$\sigma_R = \epsilon (1+\tau) \left(\frac{d\sigma}{d\Omega}\right) / \left(\frac{d\sigma}{d\Omega}\right)_{Mott}$$
$$= \tau G_M^{N\,2} + \epsilon G_E^{N\,2}$$

Vary E and θ to measure σ_R at different ϵ but same Q^2 and plot:

- Slope $ightarrow ~G_E^{N2}$
- Intercept $ightarrow ~ G_M^{N\,2}$
- G_M^N dominates at high Q^2
- σ_R decreases quickly with Q^2

Blue dashed \rightarrow FF ratio = 1

Red dotted \rightarrow polarized measure

CLAS Radiative Corrections

D. Rimal et al. Phys. Rev. C95 065291 (2017).

DORIS Storage Ring at DESY, Hamburg, Germany

Extensive modifications to DORIS

- move RF cavities, ARGUS
- provide cooling water, power
- open pit, move shielding walls
- optics, synchrotron radiation
- automated polarity switches

Great support from DESY !

- MEA, MKK, DORIS operators
- Jan Hausschildt, Frank Brinker

Tight schedule shutdown end 2012

OLYMPUS funded end 2009 !

OLYMPUS Detector

D.K. Hasell

Backup

Luminosity

Luminosity

DIMPÙ

Luminosity

Three independent and consistent measures of luminosity:

- slow control using molecular flow calculation
 - 2 % between beam species, 5 % absolute
- 12° MWPC with coincident proton in WC
 - 0.46 % between beam species, 2.4 % absolute
- multi-interaction events $(e^\pm e \to e^\pm e) + (e^\pm p \to e^\pm p)$ in SYMB
 - 0.1 % statistical, 0.36 % systematic

Chose to use multi-interaction events, MIE, as the most accurate:

- negligible TPE at 1.29°

- $\langle Q^2 \rangle = 0.002~{\rm GeV^2}$, $\langle \epsilon \rangle = 0.99975$

- allows additional measurement of TPE at 12°

-
$$R_{2\gamma} = 0.9975 \pm 0.010 \pm 0.0053$$

- $\langle Q^2 \rangle = 0.165 \ {\rm GeV^2}$, $\langle \epsilon \rangle = 0.98$

Radiative Corrections and Initial State Radiation

Jan Bernauer, Rebecca Russell, and Axel Schmidt, MIT

ÓLYMPÙ

Luminosity

Radiative Corrections

Analysis Procedure

All analyses share the following:

- based on the same run list and same tracked data files
- use the same tracked, radiatively generated, MC files
 - based on the same detector calibration, simulation, and digitization
- results normalized with MIE and binned in the same Q^2 and ϵ bins

Analyses are independent in the following:

- philosophy in selecting elastic candidates vary
- selection and size of applying cuts are different

Four analyses combined for final result (Axel, Rebecca, Brian, and Jan)

- results simply averaged
- variance added to uncorrelated uncertainty in quadrature

Schematic of Analysis Procedure

Systematic Uncertainties

OLYMPUS control of systematics

- left / right symmetric detector \rightarrow two independent measurements
- $R_{2\gamma}$ is a ratio so many efficiencies cancel
- four independent analyses that can be examined and combined

Correlated systematic uncertainties

- luminosity (MIE) 0.36%
- beam energy 0.04%-0.13%
- beam and detector geometry 0.25%
- total 0.46%

Uncorrelated systematic uncertainties

- track efficiency 0.25%
- event selection and background subtraction 0.25%--1.17%
- total 0.37%-1.20%

OLYMPUS Analysis

Systematics

Timeline

2005

- May BLAST Experiment ends
- November BLAST@ELSA, @DORIS

2007

- May seminars DESY, Zeuthen, and PRC
- June Letter of Intent

2008

- September OLYMPUS proposal
- December cond. approval DESY + PRC

2009

- August Technical Design Report
- September technical review

2010

- January approval and funding
- February disassemble BLAST and ship
- July start modifications and assembly

2011

- January install target and test
- February ring run tests
- July roll into DORIS ring
- August-December service day test runs

2012

- February first data run
- July repair target, other improvements
- October December second data run

2013

- January collected cosmic data
- February-May optical survey, field map
- June-July disassemble OLYMPUS

2016

- October most of the analysis complete
- 7 PhD's

Fit to OLYMPUS $R_{2\gamma}$

OLYMPUS Results

Fit to OLYMPUS Data

Fit to Rebinned OLYMPUS $R_{2\gamma}$

