

Hyperon Spectroscopy

Karin Schönning, Uppsala University, Hadronic Physics with Lepton and Hadron Beams JLab, Newport News, VA September 5-8th 2017

Outline

- Prologue
- Hyperons
- Spectroscopy
- Hyperons ♥ spectroscopy
- Experimental facilities
 - Past
 - Present
 - Future
- Summary

Prologue: The strong interaction

Missing in the Standard Model of particle physics:

A complete understanding of the strong interaction.

- Short distances / high energies: pQCD rigorously and successfully tested.
- Charm scale and below: pQCD fails, no analytical solution possible.

Prologue: The mysterious nucleon

- Baryons are the simplest system for which the non-abelian nature of the strong interaction is manifest.
- Protons have been known for almost a century.
- Nucleons constitute the major part of the visible mass of the Universe.
- Yet, we don't understand them:
 The valence quarks only constitute ~1 % of the nucleon mass...

...and about 1/3 of the spin!

The mysterious nucleon

Common approaches (inspired by atomic physics)*:

- Scatter on it (EMFF's, GPD's, TMD's...)
- Excite it (spectroscopy)
- Replace one of the building blocks (hyperons)

*C. Granados et al., EPJA 53 (2017) 117

The mysterious nucleon

Common approaches (inspired by atomic physics)*:

- Scatter on it (EMFF's, GPD's, TMD's...)
- Excite it (spectroscopy)
- Replace one of the building blocks (hyperons)

Hyperons – probe of QCD

Scale probed by a system:

- u,d: Non-perturbative \rightarrow hadron degrees of freedom.
- Strange: $m_s \approx 100 \text{ MeV} \sim \Lambda_{\text{QCD}} \approx 200 \text{ MeV}$
 - \rightarrow degrees of freedom unclear.
 - \rightarrow Probes QCD in the intermediate domain.
- Charm: *m_c* ≈ 1300 MeV
 - \rightarrow Quark and gluon degrees of freedom more relevant.

 \rightarrow just below pQCD breakdown.

Hyperons – probe of QCD

Scale probed by a system:

- u,d: Non-perturbative \rightarrow hadron degrees of freedom.
- Strange: $m_s \approx 100 \text{ MeV} \sim \Lambda_{\text{QCD}} \approx 200 \text{ MeV}$
 - \rightarrow degrees of freedom unclear.
 - \rightarrow Probes QCD in the intermediate domain.
- Charm: *m_c* ≈ 1300 MeV
 - \rightarrow Quark and gluon degrees of freedom more relevant.
 - \rightarrow just below pQCD breakdown.

Hyperons – role in history

- 1950's and 1960's: a multitude of new particles discovered \rightarrow obvious they could not all be elementary
- 1961: Eight-fold way from SU(3) flavour symmetry $\rightarrow \Omega^{-}$ predicted
- 1962: Discovery of Ω^{-} : success of the Eight-fold way.
- 1964: Quark Model (Gell-Mann and Zweig)

- Light baryon sector extensively explored, *e.g.* at
 - JLAB
 - MAMI
 - ELSA
 - Spring-8
- Classification scheme: SU(6) x O(3) (spin, flavour and L).

- Common theoretical approach: Symmetric quark models
 - See e.g. Löring et al., EPJA 10 (2001) 395
 - Constituent quarks
 - Confinement potential
 - Residual interaction

Light baryon spectroscopy

Löring *et al.,* EPJA 10 (2001) 395

Light baryon spectroscopy

Löring *et al.,* EPJA 10 (2001) 395

Light baryon spectroscopy

Examples of alternatives to symmetric quark models:

Hyperons ♥ spectroscopy

What happens if we replace one of the light quarks in the proton with one - or many heavier quark(s)?

The $\Lambda(1405)$ hyperon

- Spin and parity measured by CLAS: $J^P = \frac{1}{2}^{-*}$.
- Recent lattice calculations from the Adelaide group**: large $\overline{K}N$ molecule component.

The Λ hyperon spectrum

- Understanding the strange sector is crucial for understanding the charm sector!
- Example: The pentaquark candidate*.

* Aaij et al., PRL 115 (2015) 702001

From single- to multi-strange ...

Test of SU(3) symmetry:

- N^* and Δ siblings in the strange sector
- Double- and triple strangeness (Ξ and Ω)
 - Should be as many Ξ^* as N^* and Δ^* .
 - Should be as many Ω^* as Δ^* .

But how does the excitation pattern really look like?

The Σ^* , Ξ^* and Ω^* hyperon spectra

Multi-strange hyperons

Multi-strange hyperon spectrum:

- Very scarce data bank*.
- Octet ± partners of N*?
 Only a few found
- Decuplet Ξ* and Ω* partners of Δ*?

 Nothing found
- Parity not measured for ground-state Ξ and Ω.

J^P	(D,L^P_N)	S		Octet n	nembers		Singlets
1/2+	(56,0^+)	1/2	N(939)	A(1116)	S (1193)	E(1318)	-
1/2+	$(56,0^+_2)$	1/2	N(1440)	A(1600)	$\Sigma(1660)$	E(?)	
1/2-	$(70,1_1^-)$	1/2	N(1535)	A(1670)	$\Sigma(1620)$	三(?)	A(1405)
3/2-	$(70,1_1^-)$	1/2	N(1520)	A(1690)	$\Sigma(1670)$	Ξ(1820)	A(1520)
1/2-	$(70,1_1^-)$	3/2	N(1650)	A(1800)	$\Sigma(1750)$	三(?)	
3/2-	$(70,1_{1}^{-})$	3/2	N(1700)	A(?)	$\Sigma(?)$	E(?)	
5/2-	(70,11)	3/2	N(1675)	A(1830)	E(1775)	三(?)	
1/2+	$(70,0^+_2)$	1/2	N(1710)	A(1810)	$\Sigma(1880)$	三(?)	A(?)
3/2+	$(56, 2^+_2)$	1/2	N(1720)	A(1890)	$\Sigma(?)$	E(?)	
5/2+	$(56,2^+_2)$	1/2	N(1680)	A(1820)	S (1915)	E(2030)	
7/2-	$(70, 3^{-}_{3})$	1/2	N(2190)	A(?)	$\Sigma(?)$	E(?)	A(2100)
9/2-	$(70, 3^{-}_{3})$	3/2	N(2250)	A(?)	$\Sigma(?)$	三(?)	
9/2+	(56,44+)	1/2	N(2220)	A(2350)	$\Sigma(?)$	三(?)	
				Decuplet	members		
3/2+	$(56,0^+_0)$	3/2	∆(1232)	Σ(1385)	E(1530)	Ω(1672)	
3/2+	$(56,0^+_2)$	3/2	∆(1600)	S (?)	三(?)	Ω(?)	
1/2-	$(70,1^{-}_{1})$	1/2	∆(1620)	$\Sigma(?)$	E(?)	\$ (?)	
3/2-	$(70,1_{1}^{-})$	1/2	∆(1700)	$\Sigma(?)$	E(?)	 <i>Ω</i> (?)	
5/2+	$(56,2^+_2)$	3/2	∆(1905)	S (?)	三(?)	Ω(?)	
7/2+	$(56,2^+_2)$	3/2	∆(1950)	S (2030)	三(?)	Ω(?)	
11/2+	$(56,4^+_4)$	3/2	△(2420)	$\Sigma(?)$	E(?)	\$ (?)	24

* PDG

Multi-strange hyperons

- Are the states missing
 - Because they are not there (theoretical picture wrong)?
 - or because previous experiments haven't been optimal for multistrange baryon search?
- PDG note on Ξ hyperons:

"...nothing of significance on Ξ resonances has been added since our 1988 edition."

J^P	(D, L_N^P)	S		Octet members			Singlets
1/2+	$(56,0^+_0)$	1/2 N	(939)	A(1116)	Σ(1193)	E(1318)	-
1/2+	$(56,0^+_2)$	1/2 N	(1440)	A(1600)	$\Sigma(1660)$	E(?)	
1/2-	$(70,1_{1}^{-})$	1/2 N	(1535)	A(1670)	$\Sigma(1620)$	Ξ(?)	A(1405)
3/2-	$(70,1_{1}^{-})$	1/2 N	(1520)	A(1690)	$\Sigma(1670)$	Ξ(1820)	A(1520)
1/2-	$(70,1_{1}^{-})$	3/2 N	(1650)	A(1800)	S (1750)	Ξ(?)	
3/2-	$(70,1^{-}_{1})$	3/2 N	(1700)	A(?)	$\Sigma(?)$	E(?)	
5/2-	(70,11)	3/2 N	(1675)	A(1830)	E(1775)	三(?)	
1/2+	$(70,0^+_2)$	1/2 N	(1710)	A(1810)	S (1880)	E(?)	A(?)
3/2+	$(56,2^+_2)$	1/2 N	(1720)	A(1890)	$\Sigma(?)$	三(?)	
5/2+	$(56,2^+_2)$	1/2 N	(1680)	A(1820)	S (1915)	E(2030)	
7/2-	$(70,3^{-}_{3})$	1/2 N	(2190)	A(?)	$\Sigma(?)$	E(?)	A(2100)
9/2-	$(70, 3^{-}_{3})$	3/2 N	(2250)	A(?)	$\Sigma(?)$	E(?)	: 영
9/2+	(56,44)	1/2 N	(2220)	A(2350)	$\Sigma(?)$	三(?)	
		-	[Decuplet	members		
3/2+	$(56,0^+_0)$	3/2 A	1232)	Σ(1385)	E(1530)	Ω(1672)	
3/2+	$(56,0^+_2)$	3/2 4	(1600)	S (?)	5(?)	Ω(?)	
1/2-	$(70,1_{1}^{-})$	1/2 4	1620)	S (?)	E(?)	\$ (?)	
3/2-	$(70,1_{1}^{-})$	1/2 4	1700)	S (?)	E(?)	\$\$ (?)	
5/2+	$(56,2^+_2)$	3/2 4	1905)	S (?)	E(?)	Ω(?)	
7/2+	$(56, 2^+_2)$	3/2 4	1950)	$\Sigma(2030)$	三(?)	Ω(?)	
11/2+	(56.4+)	3/2 40	2420)	5(2)	=(?)	Q(2)	

Multi-strange hyperons

The $\Xi^*(1530)$ hyperon

- Experimentally best known
- Width $\Gamma \sim 10$ MeV (compare to Δ ...)
- Main decay $\Xi^*(1530) \rightarrow \Xi\pi$ (BR ~100%)
- Predicted $J^P = \frac{3}{2}^+$
- Spin measured by BaBar to $J = \frac{3}{2}^{*}$.

* Aubert et al., PRD 78 (2008) 034008

Facilities: Past

- A lot of previous and ongoing activity in nucleon and Δ spectroscopy (*e.g.* CLAS @ JLAB, CBELSA/TAPS)
- Charmed hyperons often by-product at b-factories (BaBar, Belle, CLEO)

Facilities: Past

- A lot of previous and ongoing activity in nucleon and Δ spectroscopy (*e.g.* CLAS @ JLAB, CBELSA/TAPS)
- Charmed hyperons often by-product at b-factories (BaBar, Belle, CLEO)

• Gap to fill in the strange sector!

Facilities: Present

BES III

UNIVERSITET

- Hyperons from e.g. $e^+e^- \rightarrow J/\psi \rightarrow Y^*\overline{Y}^*$ and $\psi' \rightarrow Y^*\overline{Y}^*$
- First measurement of ±=
 (1690) and ±=
 (1820) in charmonium decays*.
- Large data sample for ground state hyperons.
- Excited, multi-strange hyperons: lower rates.
- Focus on decay patterns.

*PRD 91 (2015) 092006

Belle II

- Hyperons from Y(nS) decays
- Challenge: BR of $Y(nS) \rightarrow Y^*\overline{Y}^*$?
- Focus on charmed hyperons.

J-PARC

- Hyperons from $K^{-} p \rightarrow K^{+} \Xi^{*-} (K^{-} p \rightarrow 2K^{+} \Omega^{*-})$
- Identification by missing mass technique
- Large acc.
 detector under planning.

Pictures from Belle2@DESY and talk by H. Noumi at KL2016

Facilities: Present

UPPSALA UNIVERSITET

LHCb

- Charmed hyperons:
 - Double-charm candidate
 - Five strange-charmed baryons
- Strange hyperons:
 - Inclusive production in $pp \rightarrow Y^* X$
 - Spin & parity determination require known initial state
 - \rightarrow use Λ_b decays
 - \rightarrow lower rates

Facilities: present

Facilities: Present

CLAS12 and GlueX @ JLAB:

- Hyperons from $\gamma p \rightarrow \Xi^* + 2K^+$ (See talk by V. Crede)
- Challenges:
 - Small cross sections
 - Many final state particles

Hall D $K_L @$ JLAB

- Hyperons from $K_L p \to K^+ \Xi^{*-}$.
- Ξ^* in two-body final state.
- Challenge:
 - Mixed strangeness in initial state
 - \rightarrow background from K+X from charge exchange

Facilities: Future

PANDA @ FAIR:

- Hyperons from $\bar{p}p \rightarrow \bar{Y}^*Y, \rightarrow \bar{Y}Y^*.$
- Cross sections $nb \mu b$.
- Two-body final state.
- Symmetry in hyperonantihyperon observables.
- Exclusive measurements
- Charged and neutral modes accessible.

Feasibility study of $\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^{*-}(1820)$

, E-(1820)

- $p_{beam} = 4.6 \text{ GeV/c}$
- Consider the $\Xi^{*-}(1820) \rightarrow \Lambda$ K decay, assume BR = 100%

р

- Assume $\sigma = 1 \ \mu b$
- Simplified MC framework
- Day One luminosity: 10³¹cm⁻²s⁻¹
- Results:
 - ~30 % inclusive efficiency for $\Xi^{*-}(1820)$
 - ~5 % exclusive efficiency for $\overline{\Xi}^+ \Xi^{*-}(1820)$
 - Low background level
 - ~15000 exclusive events / day

J. Pütz, talk at FAIRNESS³²2016

 π^+

► π⁺,

 $\overline{\mathbf{V}}_{0}$

р

Summary

- Baryons crucial for understanding the strong interaction.
- Open questions on light baryons:
 - Missing states?
 - Parity pattern?
 - Degrees of freedom?
- What happens if light quarks are replaced with heavier?

Summary

- Past experimental efforts focus on N^* and Δ^* .
- Almost nothing on multi-strange hyperons:

How does the pattern obserbed in the N* and Δ^* carry over to the strange sector?

- Interesting opportunities at current facilities world-wide.
- Next generation: PANDA at FAIR.

Thanks to:Albrecht Gillitzer and Stefan Leupold