Meson Spectroscopy at CLAS/CLAS12

Lei Guo Florida International University

Why study meson?

- Meson, 介子 (the particle "between" lepton and baryon) is the simplest system to study strong interaction
- Quark Models have been extremely successful

*Phys.Rev. D82 (2010) 034508

LQCD Calculations: Exotic Meson Should Exist?

Jefferson Lab

Dudek, Edwards, Guo, & Thomas PRD 88, 094505 (2013)

$\pi_1(1600) \rightarrow \pi^+\pi^-\pi^-$

Recent CLAS results: g12

CLAS geometry optimized for peripheral production acceptance

 $\gamma p \rightarrow \Delta^{++} \pi^+ \pi^- \pi^-$

CLAS g12

γ

Strange Hybrids?

[MeV/c²

600

500E

400 300E

200È

100

٥

0.2

0.4

0.6

 $M(\pi^*\pi^-)$

0.8

1 $[GeV/c^2]$ 1.2

1.4

Events/20

First ever analysis of Kpp photoproduction

K+

-Λ

him

р

2.2

2

K+

H. Al Ghoul (2016 FSU Dissertation)

$\gamma p \rightarrow \Lambda K^+ \pi^+ \pi^- PWA$ results CLAS g12 preliminary K*(1410) $I(J^P) = \frac{1}{2}(1^-)$

PWA Results of 1⁻ P

 1^{P} , K^{*}(892) π^{+} Intensity

Mass $m = 1414 \pm 15$ MeV (S = 1.3) Full width $\Gamma = 232 \pm 21$ MeV (S = 1.1)

K*(1410) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/c)
K *(892)π	> 40 %	95%	410
$K\pi$	(6.6±1.3) %		612
Κρ	< 7 %	95%	305
γK^0	seen		619

Scalar mesons and glueball candidates?

I=0

Name	Mass $[MeV/c^2]$
$f_0(600) *$	400 - 1200
$f_0(980) *$	980 ± 10
$f_0(1370) *$	1200 - 1500
$f_0(1500) *$	1507 ± 5
$f_0(1710) *$	1718 ± 6

- There are 5 isoscalar states identified by experiment: f0 $(600), f_0(980), f_0(1370), f_0$ (1500) and $f_0(1710)$
- There are only 2 slots for the f_0 states in the quark model
- The assignments of the f₀ states is still uncertain
 - Glueball content/mixture?

Scalar mesons and glueball candidates?

CLAS g12: Scalar mesons and glueball candidates?

There is a clear kaon peak above the combinatorial background

Only those events are selected which have a missing mass of the proton

The plot of the two K_s^0 plotted against each other shows the high correlation between them.

4 combinations of $\pi^+\pi^-$ are possible. We select the 2 combinations that most closely match the PDG value of the Ks mass.

CLAS g12: Scalar mesons

The cuts:

•Timing cuts for pion

identification

- •Missing mass (proton)
- DOCA of each pion pair
- DOCA of kaon pair
- $E\gamma > 2.7 \text{ GeV}$
- Kinematic fit confidence level > 10%

The $K_s^{0}K_s^{0}$ invariant mass spectrum has a peak around 1270 MeV and another around 1500 MeV.

Not corrected for acceptance

CLAS g12: Scalar mesons S-wave domination

Data (Signal + Bgnd), Bin 1525

- PWA attempted but not successful
- Angular distributions analyzed and compared with simulaton
- S-wave dominates

Mass Bin	S-wave fraction	S-wave fraction
(MeV)	(S+B region)	(Sidebands)
1000-1050	1.000 ± 0.045	1.000 ± 0.031
1050-1100	1.000 ± 0.031	1.000 ± 0.029
1100-1150	0.973 ± 0.025	0.982 ± 0.018
1150-1200	1.000 ± 0.023	1.000 ± 0.015
1200-1250	1.000 ± 0.022	1.000 ± 0.011
1250-1300	1.000 ± 0.013	1.000 ± 0.063
1300-1350	1.000 ± 0.020	1.000 ± 0.011
1350-1400	1.000 ± 0.028	1.000 ± 0.026
1400-1450	1.000 ± 0.025	0.922 ± 0.019
1450-1500	0.928 ± 0.037	0.890 ± 0.023
1500-1550	0.903 ± 0.039	0.879 ± 0.021
1550-1600	0.803 ± 0.044	0.897 ± 0.024
1600-1650	0.791 ± 0.056	0.883 ± 0.032
1650-1700	0.762 ± 0.052	0.910 ± 0.031
1700-1750	0.660 ± 0.053	0.902 ± 0.033
1750-1800	0.690 ± 0.071	0.941 ± 0.041
1800-1850	0.845 ± 0.086	0.994 ± 0.096

CLAS g11: First observation of $f_0(980)$ in photoproduction

MB, R.DeVita A. Szczpaniak et al Phys.Rev.Lett. 102:102001,2009 MB, R.DeVita A. Szczpaniak et al Phys.Rev. D80:072005,2009

γр→рππ

 $M(\pi^+\pi^-)$ spectrum below 1.5 GeV:

- P-wave: ρ meson
- D-wave: f₂(1270)
- S-wave: σ, f₀(980) and f₀(1320)

$$\langle Y_{\lambda\mu}\rangle(E_{\gamma},t,M) = \frac{1}{\sqrt{4\pi}} \int d\Omega_{\pi} \frac{d\sigma}{dt dM d\Omega_{\pi}} Y_{\lambda\mu}(\Omega_{\pi})$$

Amplitude parametrization (Dispersion relation) Related to ππ scattering matrix: phase-shift, inelasticity, S-P-D-F amplitude in 0.4 GeV < M_{cs} < 1.4 GeV

$$a_{im,l}(s) = \frac{1}{2} [I + S_{im,l}(s)] \overline{a_{im,l}(s)} - \frac{1}{\pi} D_{im,l}^{-1}(s) PV \int_{s_{th}} ds' \frac{N_{im,l}(s') \rho(s')}{s'} \overline{a_{im,l}(s')} ds' \frac{N_{im,l}(s')}{s'} \overline{a_{im,l}(s')} ds' \frac{N_{im,l}(s')}{s'} \overline{a_{im,l}(s')} \overline{a_{im,l}(s')} ds' \frac{N_{im,l}(s')}{s'} \overline{a_{im,l}(s')} \overline{a_{i$$

$$\tilde{a}_{lm,I} = \left[\mathcal{A} + \mathcal{B}s + \mathcal{C}s^2 + \cdots\right]\left[k\right]$$

Expanded in a Taylor series: coefficient fit to the experimental moment

First observation of the $f_0(980)$ in a photoproduction experiment

Meson Spectroscopy at JLAB 12 GeV GlueX and CLAS12

CLAS12: PWA with FAST MC

D.Glazier (U of Glasgow)

CLAS12: PWA with Realistic Simulation

$e p \rightarrow e' p \pi 0 (\gamma p \rightarrow p \pi 0)$

- S.Diehl (U Giessen)
- Full CLASI2 GEANT4 simulation

- Full reconstruction
- Electroproduction amplitudes provided by JPAC (V.Mathieu) AMPTOOLS
- Electron detected at small angles in the CLASI2-FT

High level physics analysis

- γ_v Linear polarisation: σ'ττ (Σ)
- Xsection
- Large-t behaviour dσ/dt(90⁰)

Q2_vs_CMPhi

200

0.1

0.05

 e- polarisation: σ_{TL} (not available in photoproduction!) Full PWA

raw data

acceptance corrected

CLAS12: KPP run

Summary

- CLAS has been successful in various meson spectroscopy experiments/analysis
- No sighting/evidence for exotic meson/hybrids/ glueballs
- CLAS12, with higher energy and statistics, will start data collection soon (Spring 2018)

Stay tuned!

Acknowledgement

- Organizers and Jefferson Lab
- Paul Euginio/Ken Hicks/Marco Battegleri
- Speaker is supported by DOE grant 800004726