(Brief Remarks on) Baryon Spectroscopy

Michael Döring

Hadronic Physics with Lepton and Hadron Beams

Jefferson Lab, September 5-8

Thanks for slides: Rönchen, Mai, Landay, Nakayama, Burkert,...

Supported by

HPC support by JSC grant jikp07

DOE DE-AC05-06OR23177 & DE-SC0016582; NSF PIF 1415459 & CAREER PHY-1452055

Outline

- (Theoretical) Motivation
- Phenomenology: Kaon photoproduction, model selection, ...
- [Form factors]

Motivation and overview

The Missing Resonance Problem

Overview: Int.J.Mod.Phys. E22 (2013) 1330015

$\Rightarrow \frac{\text{Partial wave decomposition:}}{\text{decompose data with respect to a conserved}}$ quantum number: J^P

Theoretical predictions of excited hadrons e.g. from lattice calculations:

Missing resonance problem

 \rightarrow Simultaneously analyze pion- and photon-induced reactions

Hybrid Baryons

Using ONLY meson-baryon degrees of freedom (no explicit quark dynamics):

Manifestly gauge invariant approach based on full BSE solution

[M. Mai, P.C. Bruns, U.-G. Meissner PRD 86 (2012) 094033 [arXiv:1207.4923]

→ Making the "Missing resonance problem" worse ?!

Measured reactions (incomplete)

• Bonn-Gatchina:
$$(\pi N \to \pi N), \to \eta N, K\Lambda, K\Sigma, \pi\pi N, \omega N$$

 $\gamma p \to \pi N; \to \eta N, K\Lambda, K\Sigma, \pi\pi N, \omega N, \eta' N$
 $\gamma n \to \pi N$

- Giessen: $(\pi N \to \pi N), \to \eta N, K\Lambda, K\Sigma, (\pi \pi N), \omega N$ $\gamma p \to \pi N; \to \eta N, K\Lambda, K\Sigma, \omega N$
- SAID: $\pi N \to \pi N; \to \eta N, \ \gamma p \to \pi N, \ \gamma n \to \pi N; \gamma^* p \to \pi N$
- MAID: $(\pi N \to \pi N); \gamma p \to \pi N, (\to \eta N, \to K\Lambda), \gamma n \to \pi N; \gamma^* p \to \pi N$
- ANL-Osaka: $(\pi N \to \pi N), \to \eta N, K\Lambda, K\Sigma, \pi\pi N$ $\gamma p \to \pi N; \to \eta N, K\Lambda, \pi\pi N; (\gamma^* p \to \pi N)$
- Jülich-Bonn: $(\pi N \to \pi N), \to \eta N, K\Lambda, K\Sigma$ $\gamma p \to \pi N; \to \eta N, K\Lambda$
- JLAB-MSU: $\gamma^* N \rightarrow \pi \pi N$

* largest set of analyzed reactions

One aspect: Three-Body Unitarity

[GWU & JPAC (Mai, Hu, M.D., Pilloni, Szczepaniak) EPJA (2017), arXiv: 1706.06118 [nucl-th]]

Unitarity

$$\langle q_1, q_2, q_3 | (\hat{T}^+ - \hat{T}^-) | p_1, p_2, p_3 \rangle = i \int \left(\prod_{\ell=1}^3 \frac{\mathrm{d}^4 k_\ell}{(2\pi)^4} (2\pi) \delta^+ (k_\ell^2 - m^2) \right) (2\pi)^4 \delta^4 \left(P - \sum_{\ell=1}^3 k_\ell \right)$$

 $\times \langle q_1, q_2, q_3 | \hat{T}^- | k_1, k_2, k_3 \rangle \langle k_1, k_2, k_3 | \hat{T}^+ | p_1, p_2, p_3 \rangle,$

Bethe-Salpeter Eq. (BSE) ansatz

Strategy: To obtain a 3-body unitary amplitude, compare the right-hand sides of unitarity relation, both for generic isobar structure and BSE [Aaron, Amamdo, Young, PR (1969)]

$$\langle p|T(s)|q\rangle = \frac{v(P-p-q,q)v(P-p-q,p)}{(P-p-q)^2 - m^2} + \int \frac{\mathrm{d}^3l}{(2\pi)^3} \frac{1}{2E_l} \frac{v(P-p-l,l)v(P-p-l,p)}{(P-p-l)^2 - m^2} \frac{1}{D(\sigma(l))} \langle l|T(s)|q\rangle$$

- Three-body unitarity induces two-body unitarity of the sub-amplitude
- Re-arranging gives solution of $3 \rightarrow 3$ scattering in terms of <u>on-shell</u> $2 \rightarrow 2$ amplitude $T_{22} = vSv$

$$\begin{aligned} \langle q_1, q_2, q_3 | \hat{T}_c(s) | p_1, p_2, p_3 \rangle = & \frac{1}{3!} \sum_{n=1}^3 \sum_{m=1}^3 T_{22}(\sigma_{\mathbf{q}_n}) \tilde{T}_{\mathbf{q}_n \mathbf{p}_m}(s) T_{22}(\sigma_{\mathbf{p}_m}) \\ \tilde{T}_{\mathbf{q}\mathbf{p}}(s) = & \frac{1}{(P-p-q)^2 - m^2} + \int \frac{\mathrm{d}^3 \boldsymbol{\ell}}{(2\pi)^3} \frac{1}{2E_{\boldsymbol{\ell}}} \frac{T_{22}(\sigma_{\boldsymbol{\ell}})}{(P-p-\ell)^2 - m^2} \tilde{T}_{\boldsymbol{\ell}\mathbf{q}}(s) \end{aligned}$$

• 3-body equation is of integral type; not further reducible like in 2-body.

- Three-body forces can (and have to be) be included straightforwardly.
- <u>Not</u> an approximation in description of physical on-shell three-body states, rather an organization scheme in terms of quantum numbers resonant or non-resonant.
- May be parametrized in terms of microscopic description (→ ANL/Osaka, Julich-Bonn) or be left at dispersive level (choice).
- Three-body unitarity fully dictates the imaginary parts of the amplitude in the physical region.
 - \rightarrow dictates the divergences in finite volume.
 - \rightarrow How to relate excited baryons to lattice QCD simulations?

• Extensive effort in recent years (very non-complete list):

K. Polejaeva and A. Rusetsky, Eur. Phys. J. A 48 (2012) 67

R. A. Briceno and Z. Davoudi, Phys. Rev. D 87 (2013) 094507

L. Roca and E. Oset, Phys. Rev. D **85** (2012) 054507

S. Kreuzer and H. W. Grießhammer, Eur. Phys. J. A 48 (2012) 93.

P. Guo, Phys. Rev. D **95** (2017) 054508

R. A. Briceño, M. T. Hansen and S. R. Sharpe, arXiv:1701.07465 [hep-lat]

H.-W. Hammer, J.-Y. Pang and A. Rusetsky, arXiv:1707.02176 [hep-lat]

• Roper on lattice from BGR group [Lang et al., Phys.Rev. D95 (2017), 014510]

 $M_{\pi} \approx 156 \,\mathrm{MeV}$

Genuine three-body dynamics

Data: HadronSpectrum (Dudek, PRD 2013,Briceño PRL 2016); Analysis: M.D., B. Hu, M. Mai, arXiv 1610.10070 See also: Bolton, Briceno, Wilson, Phys.Lett. B757 (2016) 50

> Tower of boosted $2 \rightarrow 2$ amplitudes to implement 3-body quantization condition

Power-law finite-volume effects dictated by three-body unitarity

Finite volume spectrum

• Spinless particles; isobar S-wave decay

- Isobar-spectator in A₁
- Organization of amplitude in shells |p|=n

M. Mai, M.D.,

in progress

- Each blue line is a transition from shell i ↔ j (i,j=0,...,8)
- Genuine three-body poles in T(3 → 3) give the finite-volume eigenvalues
- Green lines are free 3-body energies

Phenomenology

Convergence in Baryon Spectroscopy Common analysis of BnGa, JuBo, MAID, SAID groups to assess systematic uncertainties

[A.V. Anisovich, R. Beck, M.D. et al., EPJA(2016)]

J. Hartmann et al. [CBELSA/TAPS Collaboration], Phys. Lett. B 748, 212 (2015).

Data:

A. Thiel et al. [CBELSA/TAPS Collaboration], arXiv:1604.02922 [nucl-ex] M. Gottschall et al. [CBELSA/TAPS Collaboration], in preparation.

- How do differences in Partial-Wave Analyses behave once a set of new high-precision polarization measurements is included?
- Compare "Before" and "After" including sets of new highprecision polarization observables
- Calculate variance(s) of multipoles

The Julich-Bonn Dynamical Coupled-Channel Approach e.g. EPJ A 49, 44 (2013)

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial-wave basis

$$\langle L'S'p'|T^{IJ}_{\mu\nu}|LSp\rangle = \langle L'S'p'|V^{IJ}_{\mu\nu}|LSp\rangle +$$

$$\sum_{\gamma,L''S''} \int_{0}^{\infty} dq \quad q^{2} \quad \langle L'S'p'|V^{IJ}_{\mu\gamma}|L''S''q\rangle \frac{1}{E - E_{\gamma}(q) + i\epsilon} \langle L''S''q|T^{IJ}_{\gamma\nu}|LSp\rangle$$

- potentials V constructed from effective \mathcal{L}
- *s*-channel diagrams: *T*^P genuine resonance states
- t- and u-channel: T^{NP}
 dynamical generation of poles
 partial waves strongly correlated

Analytic structure

Resonance states: Poles in the *T***-matrix** on the 2^{*nd*} Riemann sheet

 $Re(E_0) = mass, -2Im(E_0) = width$

- (2-body) unitarity and analyticity respected
- 3-body $\pi\pi N$ channel:
 - parameterized effectively as $\pi\Delta$, σN , ρN
 - $\pi N/\pi\pi$ subsystems fit the respective phase shifts
 - ↓ branch points move into complex plane

- pole position E₀ is the same in all channels
- residues→ branching ratios

Photon-induced Reactions

- simultaneous fit of $\gamma p \rightarrow \pi^0 p$, $\pi^+ n$, ηp , $K^+ \Lambda \in \pi N \rightarrow \pi N$, ηN , $K\Lambda$, $K\Sigma$
- ~ 40.000 data points, ~ 500 free parameters
 fit with JURECA supercomputer: parallelization in energy (~ 300 400 processes)

Kaon-photoproduction

Measurement of recoil polarization easier due to self-analysing decay of hyperons

- \rightarrow more recoil and beam-recoil data available
- → possibility of finding new, so far missing states? ("missing resonances problem")

N(1440) PHOTON DECAY AMPLITUDES AT THE POLE

$N(1440) \rightarrow p\gamma$, helicity-1/2 amplitude A_{1/2}

MODULUS (GeV $^{-1/2}$)	PHASE (°)	DOCUMENT ID		TECN	COMMENT
-0.044 ± 0.005	-40 ± 8	SOKHOYAN	15a	DPWA	Multichannel
$-0.054 \substack{+0.004 \\ -0.003}$	5^{+2}_{-5}	ROENCHEN	14	DPWA	

Preliminary: $K^+\Lambda$ photoproduction in the JüBo model simultaneous fit of $\gamma p \rightarrow \pi^0 p$, $\pi^+ n$, ηp , $K^+\Lambda$ and $\pi N \rightarrow \pi N$, ηN , $K\Lambda$, $K\Sigma$

 $\gamma p \to K^+ \Lambda$:

Differential cross section

JU14: Jude PLB 735 (2014), MC10: McCracken PRC 81 (2010)

Beam asymmetry

D. Rönchen et al., in progress

Recoil polarization

MC04: McNabb PRC 69 (2004), MC10: McCracken PRC 81 (2010)

Target asymmetry

Preliminary: $K^+\Lambda$ photoproduction in the JüBo model simultaneous fit of $\gamma p \rightarrow \pi^0 p$, $\pi^+ n$, ηp , $K^+\Lambda$ and $\pi N \rightarrow \pi N$, ηN , $K\Lambda$, $K\Sigma$

BR07: Bradford PRC 75 (2007)

LL09: Lleres EPJA 39 (2009)

Introducing a $P_{13}(1900)$ resonance improves fit significantly, as well.

Preliminary: $K^+\Lambda$ photoproduction in the JüBo model simultaneous fit of $\gamma p \rightarrow \pi^0 p$, $\pi^+ n$, ηp , $K^+\Lambda$ and $\pi N \rightarrow \pi N$, ηN , $K\Lambda$, $K\Sigma$

Influence of new CLAS data (Paterson et al. Phys. Rev. C 93, 065201 (2016)):

Resonance content (preliminary)

Previous JüBo analyses of photoproduction:

- resonances included in studies of pion-induced reactions sufficient to describe $\gamma p \to \pi N,\,\eta N$
- no additional dynamically generated poles

Inclusion of $\gamma p \rightarrow K^+ \Lambda$ in JüBo ("JuBo2017-1"): 3 additional states

	$z_0 \; [MeV]$	$\frac{\Gamma_{\pi N}}{\Gamma_{\text{tot}}}$	$rac{\Gamma_{\eta N}}{\Gamma_{\text{tot}}}$	$\frac{\Gamma_{K\Lambda}}{\Gamma_{tot}}$	$\frac{\Gamma_{K\Sigma}}{\Gamma_{\text{tot}}}$	
N(1900)3/2+	1923 — <i>i</i> 108.4	1.5 %	0.78 %	2.99 %	69.5 %	
N(2060)5/2	1924 — <i>i</i> 100.4	0.35 %	0.15 %	13.47 %	27.02 %	
Δ (2190): $1/2^+$	2191 — <i>i</i> 103.0	33.12 %			3.78 %	
(N(<i>1730</i>)1/2 ⁻	1731 — <i>i</i> 78.73	1.86 %	1.30 %	56.43 %	1.11 %)
(N(<i>1750</i>)1/2 ⁻	1750 — <i>i</i> 158.8	1.80 %	0.29 %	0.57 %	5.63 %)

- N(1900)3/2⁺: s-channel resonances, seen in many other analyses of kaon photoproduction (BnGa), 3 stars in PDG
- N(2060)5/2⁻: dynamically generated, 2 stars in PDG, seen e.g. by BnGa
- $\Delta(2190)3/2^+$: dyn. gen., no equivalent PDG state
- N(1730)1/2⁻, N(1750)1/2⁻: dyn. gen., no equivalent PDG state previous JüBo solutions: one dyn. N(1750)1/2⁻ with z₀ ~ 1745 - i 155 MeV

Visible influence of new states

FROST/CLAS

CLAS/JuBo (M. D., D. Rönchen), Phys.Lett. B755 (2016)

First-ever measurement of observable *E* in η photoproduction, enabled through the <u>FROST</u> target

•

Is this a new narrow baryonic resonance?

 \rightarrow Conventional explanation in terms of interference effects.

LASSO is capable of setting coefficients exactly to zero

(Least Absolute Shrinkage and Selection Operator LASSO)

Different models can give satisfactory fits. How do we determine the optimal one? [J. Landay, M.D., B. HU. R. Molina, EPJA 2017]

Lasso Example: Fit to data from toy model with known best parameters

Resonance selection

[M.D., J. Landay, H. Haberzettl, M. Mai, K. Nakayama, in progress]

Synthetic data with hidden resonances

Total cross section + diff cs (not shown) + Polarization P (not shown) assuming Reaction kinematics of $~K^-p\to K\Xi$

Consequences for data analysis

- LASSO + information theory criteria/cross validation provide relative model comparison/selection. Models do not have to be good in frequentist's statistical sense.
 - \rightarrow Robust method for problematic data.

 \rightarrow Additional confidence for newly found states in different analyses (Implementation in full codes needed).

Form factors

Electroproduction - SAID

	Reaction	Data	χ²	Q ² -Data
	ү* р→ π ⁰ р	55,766	81,284	40000 μ
• 0.85 World Electro Prod from JLab CLAS	γ* p→ π⁺ n	51,312	80,004	30000 - JL-P
• <u>PWA Problems</u> :	Redundant	14,772	17,375	
Additional [S] Multipoles	Total	121,850	178,663	
• Q ² dependence	γ <mark>N→</mark> πN	25,358	53,458	30000 - π ⁺ n -
Database Problems:	All Photo*	147,208	232,121	
Most of data are unPolarized measurements	πN→πN	31,479	57,157	
• There are no π^0 n data and	All πN	178,687	289,278	30000
very few π ⁻ p [no Pol measurements] That does not allow to	γ* n→ π⁻ p	801		20000 - New CLAS data - are coming
determine n-couplings at Q ² > 0	γ*n→π ⁰ n	No Data		
				■ 0 1 2 3 4 5 6 7 Q ² (GeV ²)

Transition form factors @ CLAS 12

Transition Form Factors at the Pole

Pole: point of comparison for (unitary) chiral models & lattice [Jido, M.D., Oset, PRC77 (2008); for lattice: A. Agadjanov, Bernard, Meissner, Rusetsky, NPB886 (2014)]

First Results for $\Delta(1232)P33$

[Tiator, M.D., R. Workman, et al. PRC (2017)]

Comparison with ChPT at the pole

Outlook

- Precision spectroscopy seems to benefit from
 - Systematic search for new resonances (model selection techniques)
 - Extension to Electroproduction planned, building on existing SAID analyses.
 - Extensions of analysis tools to finite volume to analyze lattice QCD data

Fit to world data on $\pi N \rightarrow \pi N, \eta N, K\Lambda, K\Sigma$ (~ 10⁵ exp. points) [Rönchen, M.D. *et al.*, EPJA 49 (2013)]

Selected results for $\pi^- p \to K^0 \Lambda$ [almost complete experiment]

Re-measuring hadron-induced reactions

Fits: D. Rönchen, M.D., et al., EPJ A49 (2013)

 \rightarrow Physics Opportunities with meson beams,

Briscoe, M.D., Haberzettl, Manley, Naruki, Strakovsky, Swanson, EPJ A51 (2015)

Improvement in Modern Experimental Facilities: $\pi N \rightarrow \pi N$ EPECUR & GWU/SAID, Alekseev *et al.*, PRC91, 2015

Black: WI08 prediction; Red: WI14 fit; green: KA84.

SAID Analysis of New Data

FIG. 2. $\pi^- p$ elastic scattering. Red solid lines correspond to the present calculations. Dashed lines lines are the XP15 solution.

Fit (no K Σ , K Λ channel)

Dashed Line

Fit including $\mathsf{K}\Sigma$, $\mathsf{K}\Lambda$ channels

Solid Line

Narrow structures largely accounted for by threshold cusp effects.

Phys Rev C93 (2016) 062201

How to decide best value of λ ?

Toy Model Results

- Generate data from a toy model using a 9 parameter model (2 real Swaves, 1 imaginary S-wave, and 2 real P_{1,2,3} –waves shown in blue
- LASSO (red) eliminates 36 parameters from a 46 parameter fit (orange) and reconstructs the true solution (blue) quite accurately
- LASSO sets all imaginary parts of Pwaves and D- waves correctly to 0
- LASSO solution predicts true solution quite accurately beyond the fitted W_{max} =1120 MeV

Model selection with real data

fit of scarce lattice QCD data

Details $3 \rightarrow 3$ formalism

$$\langle q_1, q_2, q_3 | \hat{T}(s) | p_1, p_2, p_3 \rangle = \langle q_1, q_2, q_3 | \hat{T}_c(s) | p_1, p_2, p_3 \rangle + \langle q_1, q_2, q_3 | \hat{T}_d(s) | p_1, p_2, p_3 \rangle$$

$$= \frac{1}{3!} \sum_{n=1}^3 \sum_{m=1}^3 v(q_{\bar{n}}, q_{\bar{n}}) \hat{T}(q_n, p_m; s) v(p_{\bar{m}}, p_{\bar{m}})$$

$$:= \frac{1}{3!} \sum_{n=1}^3 \sum_{m=1}^3 v(q_{\bar{n}}, q_{\bar{n}}) \left(\tau(\sigma(q_n)) T(q_n, p_m; s) \tau(\sigma(p_m)) - 2E(q_n) \tau(\sigma(q_n)) (2\pi)^3 \delta^3(\mathbf{q}_n - \mathbf{p}_m) \right) v(p_{\bar{m}}, p_{\bar{m}})$$

$$(1)$$

$$\begin{split} T(q,p;s) &= B(q,p;s) - \int \frac{\mathrm{d}^3 \boldsymbol{l}}{(2\pi)^3} B(q,l;s) \frac{1}{2E(l)D(\sigma(l))} T(l,p;s) \,,\\ \frac{1}{\tau(\sigma(l))} &= \sigma(l) - M_0^2 - \int \frac{\mathrm{d}^3 \boldsymbol{k}}{(2\pi)^3} \frac{\lambda^2 (f(4\boldsymbol{k}^2))^2}{2E(k)(\sigma(l) - 4E(k)^2 + i\epsilon)} \,, \end{split}$$

$$B(q,p;s) = -\frac{\lambda^2 f((P-q-2p)^2) f((P-2q-p)^2)}{2E(q+p) (W-E(q)-E(p)-E(q+p)+i\epsilon)}$$

Which role do other "diagrams" play?

• Preferable to think in on-shell amplitudes $(2 \rightarrow 2 \text{ and } 3 \rightarrow 3)$, not in "diagrams"; if one still insists:

Cancellation mechanism of 2-body poles

 $2 \rightarrow 2$ boosted eigenvalues In principle present

Relevance of three-body dynamics

- Roper pole $+ \pi \Delta$ branch point \rightarrow non-standard resonance shape.
- See results by GWU/SAID data analysis center.

Where is the 3* N(1710)?
 [S. Ceci, M.D. et al, PRC84, 2011]

Fit of a model without ρN branch point (CMB type) [solid lines] to the Jülich amplitude [dashed lines]

- CMB fit to JM has pole at 1698 – 130 *i* MeV, simulates missing branch point.
- Inclusion of full analytic structure important to avoid false pole signals in baryon spectroscopy.

Toward Data-driven Analyses

[M.D., Revier, Rönchen, Workman, arXiv:1603.07265, PRC 2016]

- Multi-channel analyses to detect faint resonance signals
- All groups use GW/SAID partial waves for $\pi N \to \pi N$
 - The chi-square obtained in fits to single-energy solutions is not related to chi-square of a fit to data → Statistical interpretation of resonance signals difficult.
- Provide online covariance matrices etc. to allow other groups to perform *correlated chi-square* fits.

Slight adaptation of their code allows other groups to obtain a χ^2 (almost) as if they fitted to $\pi N \to \pi N$ directly.

$$\chi^{2}(\mathbf{A}) = \chi^{2}(\hat{\mathbf{A}}) + (\mathbf{A} - \hat{\mathbf{A}})^{T} \hat{\Sigma}^{-1} (\mathbf{A} - \hat{\mathbf{A}}) + \mathcal{O}(\mathbf{A} - \hat{\mathbf{A}})^{3}$$

Covariance matrices etc. can be downloaded on the SAID and JPAC web pages.

S = 1 + iT

Unitarity: $SS^{\dagger} = 1 \Leftrightarrow -i(T - T^{\dagger}) = T T^{\dagger}$

3-body unitarity:

discontinuities from *t*-channel exchanges

 \rightarrow Meson exchange from requirements of the S-matrix

Other cuts

- to approximate left-hand cut \rightarrow Baryon *u*-channel exchange
- σ , ρ exchanges from crossing plus analytic continuation.

Amplitude reconstruction from complete experiments and truncated partial-wave expansions

[Workman, Tiator, Wunderlich, M.D., H. Haberzettl, PRC (2017)]

How do complete experiment and truncated partial wave complete experiment compare. Depending on which partial-wave content is admitted in the amplitude?

Set	Included Partial Waves	CEA	TPWA	Complete Sets for TPWA	
1	$L = 0 \ (E_{0+})$	1(1)	1(1)1	<i>I</i> [1]	
2	$J = 1/2 \ (E_{0+}, M_{1-})$	4(4)	4(4)1	$I[1],\check{P}[1],\check{C}_x[1],\check{C}_z[1]$	
			4(3)2	$I[2],\check{P}[1],\check{C}_x[1]$	
3	$L = 0, 1 \ (E_{0+}, M_{1-}, E_{1+})$	6(6)	6(6)1	$I[1]$, $\check{\Sigma}[1]$, $\check{T}[1]$, $\check{P}[1]$, $\check{F}[1]$, $\check{G}[1]$	
			6(4)2	$I[2]$, $\check{\Sigma}[1]$, $\check{T}[2]$, $\check{P}[1]$	
			6(3)3	$I[3]$, $\check{\Sigma}[1]$, $\check{T}[2]$	
4	$L = 0, 1 \ (E_{0+}, M_{1-}, E_{1+}, M_{1+})$	†		TPWA at 1 angle not possible	Or
	full set of $4 S, P$ wave multipoles		8(5)2	$I[2],\check{\Sigma}[1],\check{T}[2],\check{P}[2],\check{F}[1]$	# C
			8(4)3	$I[3]$, $\check{\Sigma}[1]$, $\check{F}[2]$, $\check{H}[2]$	# C
5	$L = 0, 1, 2 \ (E_{0+}, M_{1-}, E_{1+}, E_{2-})$	8(8)	8(8)1	$I[1], \check{\Sigma}[1], \check{T}[1], \check{P}[1], \check{F}[1], \check{G}[1], \check{C}_x[1], \check{O}_x[1]$	# C
			8(4)2	$I[2]$, $\check{\Sigma}[2]$, $\check{T}[2]$, $\check{P}[2]$	
			8(3)3	$I[3]$, $\check{\Sigma}[2]$, $\check{T}[3]$	
6	$J \le 3/2 \ (E_{0+}, M_{1-}, E_{1+}, M_{1+}, E_{2-}, M_{2-})$	†		TPWA at 1 or 2 angles not possible	
			12(5)3	$I[3]$, $\check{\Sigma}[2]$, $\check{T}[3]$, $\check{P}[2]$, $\check{F}[2]$	
			12(4)4	$I[4], \check{\Sigma}[2], \check{F}[3], \check{H}[3]$	
7	$L = 0, 1, 2 \ (E_{0+}, \dots, M_{2+})$	†		TPWA at 1 or 2 angles not possible	
	full set of 8 S, P, D wave multipoles		16(6)3	$I[3]$, $\check{\Sigma}[3]$, $\check{T}[3]$, $\check{P}[3]$, $\check{F}[3]$, $\check{G}[1]$	
			16(5)4	$I[4]$, $\check{\Sigma}[3]$, $\check{T}[3]$, $\check{P}[3]$, $\check{F}[3]$	
		[16(4)5	$I[5], \check{\Sigma}[3], \check{F}[4], \check{H}[4]$ Four are	enough!

Order:

of different measurements,# of different observables# of different angles

Connecting Theory and Phenomenology at the pole

T.A. Gail and T.R. Hemmert, Eur. Phys. J. A 28 (2006).

Lattice: Agadjanov, Bernard, Meißner, Rusetsky, Nucl. Phys. B 886 (2014)

FIG. 4: Magnetic, electric and charge transition form factors compared with the Heavy Baryon chiral effective field theory of Gail and Hemmert $\boxed{14}$ at low Q^2 . The blue and red lines show real and imaginary parts of the complex pole form factors obtained from MAID and SAID. The dashed lines are the HBChEFT calculations.

New High-precision πN data

Data: EPECUR Analysis: SAID (dashed) Gridnev (solid) ArXiv: 1604.02379

Sharp structures seen in EPECUR data are largely accounted for by channel-coupling ($K\Sigma$) leaving less room for narrow resonance candidates.

In general:

Hadronic data serves as "input" for many PWAs!

selected results

$$\tilde{A}_{pole}^{h} = A_{pole}^{h} e^{i\vartheta^{h}}$$

$$h = 1/2, 3/2$$

$$\tilde{A}_{pole}^{h} = I_{F} \sqrt{\frac{q_{p}}{k_{p}} \frac{2\pi (2J+1) \mathsf{E}_{0}}{m_{N} \mathsf{r}_{\pi \mathsf{N}}}} \operatorname{Res} A_{L\pm}^{h}$$

 I_F : isospin factor q_p (k_p): meson (photon) momentum at the pole $J = L \pm 1/2$ total angular momentum E_0 : pole position $r_{\pi N}$: elastic πN residue

		$A_{pole}^{1/2}$		$\vartheta^{1/2}$		$A_{pole}^{3/2}$		$\vartheta^{3/2}$	
		$[10^{-3} \text{ GeV}^{-1/2}]$		[deg]		$[10^{-3} \text{ GeV}^{-1/2}]$		[deg]	
	${\rm fit} \rightarrow$	1	2	1	2	1	2	1	2
N(1710) 1/2 ⁺		15	28^{+9}_{-2}	13	77^{+20}_{-9}				
$\Delta(1232) \ 3/2^+$		-116	-114^{+10}_{-3}	-27	-27^{+4}_{-2}	-231	-229^{+3}_{-4}	-15	$-15^{+0.3}_{-0.4}$

Fit 1: only single polarization observables included

Fit 2: also double polarization observables included

FROST/CLAS (I)

The E-observable in charged-pion photoproduction

CLAS/BnGa/JuBo/SAID, PLB 750 (2015)

→ Significant impact on resonance parameters/ New resonance (BnGa) [$\Delta(2200)7/2^{-}$], arXiv: 1503.05774 Data: Akondi et al. (A2 at MAMI) PRL 113, 102001 (2014)

Older, more incomplete Chiral unitary prediction

[Jido, M.D., Oset, PRC77 (2008)]

 $\pi N, \, \eta N, \, K\Lambda, \, K\Sigma$ channels

Discrepancy: Genuine problem or due to different definitions?

This workshop: remarkable progress On complex helicity couplings by ANL-Osaka group.

Input parameters and their stability

Eur. Phys. J. A (2013) 49: 44

How to quantify the impact of new measurements?

Consider correlations of helicity couplings extracted from experiment

Results from analysis of world data of η photoproduction

[M.D., D. Sadasivan, in preparation]

-0.15

-0.05

0.15 -0.20 -0.25

-0.30 -0.35

0.0

-0.5

-1.0

-1.5

0.0

-0.6 0.2

0.1

0.0

0.1 0.2

-0.3

-0.4 05

0.20

0.15

0.10 0.05

0.00 -0.05

-0.10 U.2

0.0 1.0 0.0 2.0 W³⁻[10-³tm]

-0.3

1500 1600 1700 1800 1900 2000 210 500 1600 1700 1800 1900 2000 2100

W[MeV]

W[MeV]

0.1

 $E_{1+}[10^{-3} \text{fm}]$ 0 10

M₁-[10⁻³fm]

 $E_{2-}[10^{-3} \text{fm}]$

M₂-[10⁻³fm]

E₃₋[10⁻³fm]

Here $A = |A|e^{i\phi}$ defined at the resonance pole.

Bulk properties of uncertainties from different data sets

Helicity Coupling	All	No E	No F	No T	No Σ
Number of Data Points	6425	6369	6281	6281	6022
Generalized Variance	0.0494	0.0521	0.1288	0.1239	6.664
$\sqrt{\mathrm{Tr}\ C}$	10.4965	10.51	12.00	11.423	19.85
Multicollinearity	8.173	8.203	9.280	9.5323	10.371
Condition number	133.61	132.10	173.664	164.1	322.66

C=Covariance Matrix

Generalized Variance = Det[C] ~Volume of the Error Ellipsoid

Helicity Coupling	No artificial data	$\mathbf{C}\mathbf{x}$	$\mathbf{C}\mathbf{z}$	Cx and Cz
Number of Data Points	6425	6569	6569	6713
Generalized Variance	0.0494	0.03758	0.0362	0.0132
$\sqrt{\mathrm{Tr}\ C}$	10.4965	10.72	10.487	10.102
Multicollinearity	8.173	7.599	6.770	6.157
Condition number	133.61	112.47	109.69	107.683

- Allows to trace quantitatively the impact of data sets and observables
- Helpful in design of new measurements
- Correlations allow to assess quality of theory predictions

Field-theoretical approach; TOPT unitarized; implemented on supercomputers. Example:

 $\gamma N (\pi N) \rightarrow K\Sigma$ $\gamma \text{ or } \pi$ π π π N Δ N N

K