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Confined states of quarks and gluons
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Observed mesons and baryons well 
described by 1st principles QCD 

But these aren’t the only states 
permitted by QCD
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Do gluonic degrees of freedom 
manifest themselves in the bound 

states we observe in nature?
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Excited gluonic field coupled to       pair 


Rich spectrum of hybrid mesons predicted by Lattice QCD


Gluonic field with JPC = 1+- and mass = 1-1.5 GeV


“Exotic” JPC : not simple       from the non-rel. quark model 

qq̄

qq̄

Hybrid mesons and gluonic excitations
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Excited gluonic field coupled to       pair 


Rich spectrum of hybrid mesons predicted by Lattice QCD


Gluonic field with JPC = 1+- and mass = 1-1.5 GeV


“Exotic” JPC : not simple       from the non-rel. quark model 
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JPC = 0+�, 1�+, 2+�...

Hybrid mesons and gluonic excitations
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exoticspositive paritynegative parity
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exoticspositive paritynegative parity
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Lightest hybrid 
mesons

exoticspositive paritynegative parity

JPC
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Most experimental 
searches for hybrids 

limited to the π1 state
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Lightest hybrid 
mesons

exoticspositive paritynegative parity

JPC
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JPC

exotics
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Ideally look for a pattern of hybrid states in multiple decay modes


Primary goal of the GlueX experiment is to search for and 
ultimately map out the spectrum of light quark hybrid mesons 

M
es

on
 M

as
s (

M
eV

)
Lattice QCD: Mesons



Hadronic Physics with Lepton and Hadron Beams Justin Stevens,

Jefferson Lab   12 GeV Upgrade
Upgrade maximum electron 
beam energy from 6 to 12 GeV


Add new experimental Hall D 
with a dedicated photon beam

13
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Photon Beam
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Linearly polarized photon 
beam from CEBAF 12 GeV


Large acceptance 
detector for both charged 
and neutral particles

15

in Hall D
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in Hall D
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ρ,ω,φγ

p N

X

π,η,ρ,ω,P,...

Possible quantum numbers 
from Vector Meson Dominance 
and t-channel exchange: (IG)JPC 

P = Pomeron exchange 

Exotic JPC in photoproduction
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Can couple to all states in the lightest hybrid multiplet through t-channel 
exchange and photoproduction (via Vector Meson Dominance)


Photon beam polarization filters the “naturality” of the exchange particle
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Non-exotic JPC in photoproduction

1�� : !, ⇢

1+� : b, h

Exchange JPC

Understand non-exotic production mechanism first


Linear photon beam polarization critical to filter out 
“naturality” of the exchange particle
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Early                   physics: ɣp→π0p

20
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Early                   physics: ɣp→π0p

JPAC: Mathieu et al. PRD 92, 074013
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Exchange JPC
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ɣp→π0p beam asymmetry Σ
Beam asymmetry Σ provides 
insight into dominant production 
mechanism


Understanding production 
mechanism critical to 
disentangling JPC of observed 
states in exotic hybrid search


From experimental standpoint 
easily extended to ɣp→ηp


No previous measurements! 
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Theory and SLAC  
data beam energies

JPAC: Mathieu et al. PRD 92, 074013
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π0 and η beam asymmetries
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Phys. Rev. C 95, 042201(R)
First 12 GeV publication!  
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π0 and η beam asymmetries

24
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π0 and η beam asymmetries
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π0 and η beam asymmetries
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Dip in multiple theory 
predictions not observed


Indication of vector 
exchange dominance at 
this energy


Additional asymmetry 
measurements ongoing 
with larger dataset
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π0 and η beam asymmetries

Phys. Rev. C 95, 042201(R)
First 12 GeV publication!  
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Early spectroscopy opportunities

28

ρ’?

SLAC:                          

PRL 53, 751 (1984)

E� = 20 GeV

�p ! ⇡+⇡�p

Enhancement consistent with earlier SLAC measurement, 
but ~100x more statistics with early GlueX data


Polarization observables will provide further insight into 
the nature of this enhancement
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Previous photoproduction 
data very sparse for channels 
with multiple neutrals particles


Preliminary studies are already 
showing interesting features

29

Early spectroscopy opportunities
�p ! 4�p
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exoticspositive paritynegative parity

JPC

Mapping the meson spectrum

Already studying polarization observables for “simple” final states  

Beginning to identify known mesons in multi-particle final states
30
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J/ψ photoproduction at JLab

Threshold J/ψ provides 
information on the gluon 
distributions in the nucleon


Planned measurements in 
Hall A, B and C


First data from Hall D 
already under analysis

31
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Pentaquark searches at JLab

32

⇤b ! J/ pK�
5-quark 
bound state

Hadronic 
molecule

or cusp, triangle singularity, etc…
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Pentaquark search at

33
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CLAS12 projections for 30 days of running
at luminosity of 1035 cm-2sec-1

Pc(4450) cross section from Phys.Rev. D92, 031502 (2015)

2-gluon exchange model fit to published data
3-gluon exchange, normalized at 12 GeV
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Projection for 30 days 
at full luminosity


Uses CLAS12 
standard equipment,  
first data in 2018

Run Group: E12-12-001A
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Pentaquark Search in Hall C

Elastic J/ψ production 
using Hall C standard 
equipment


Short experiment (11 days) 
with high impact

34

E12-16-007

�p ! J/ p

J/ ! e+e�
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Observation of charm at 

35
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Preliminary 2016 + 2017(20%)

J/ 

J/ψ photoproduction at
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barrel
calorimeter

time-of
-flight

forward calorimeter 

photon beam

electron
beamelectron

beam

superconducting
magnet 

target

tagger magnet

tagger to detector distance
is not to scale

diamond
wafer

GlueX

central drift
chamber

forward drift
chambers

start
counter

DIRC

Summary
The GlueX detector has completed commissioning 
and the initial physics program has begun


First 12 GeV publication from the Spring 2016 data 
has implications for the meson production mechanism


Program of threshold J/ψ measurements in all four 
halls to search for LHCb pentaquark
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Backup

39
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                 Physics Program
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Lattice QCD: Mesons

41

Dudek et al. PRD 88 (2013) 094505
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FIG. 11: Isoscalar (green/black) and isovector (blue) meson spectrum on the m⇡ = 391MeV, 243 ⇥ 128 lattice. The vertical
height of each box indicates the statistical uncertainty on the mass determination. States outlined in orange are the lowest-lying
states having dominant overlap with operators featuring a chromomagnetic construction – their interpretation as the lightest
hybrid meson supermultiplet will be discussed later.

extrapolation might be the complex resonance pole posi-
tion, but we do not obtain this in our simple calculations
using only “single-hadron” operators.

We discuss the specific case of the 0�+ and 1�� sys-
tems in the next subsections.

E. The low-lying pseudoscalars: ⇡, ⌘, ⌘0

In lattice calculations of the type performed in this
paper, where isospin is exact and electromagnetism does
not feature, the ⇡ and ⌘ mesons are exactly stable and ⌘0

is rendered stable since its isospin conserving ⌘⇡⇡ decay
mode is kinematically closed. Because of this, many of
the caveats presented in Section III B do not apply. Fig-
ure 17 shows the quality of the principal correlators from
which we extract the meson masses, in the form of an
e↵ective mass,

me↵ =
1

�t
log

�(t)

�(t+ �t)
, (16)

for the lightest quark mass and largest volume consid-
ered. The e↵ective masses clearly plateau and can be
described at later times by a constant fit which gives a
mass in agreement with the two exponential fits to the
principal correlator that we typically use.

Figure 18 indicates the detailed quark mass and vol-
ume dependence of the ⌘ and ⌘0 mesons. We have already
commented on the unexplained sensitivity of the ⌘0 mass

to the spatial volume atm⇡ = 391MeV, and we note that
since only a 163 volume was used at m⇡ = 524MeV, the
mass shown there may be an underestimate.
Figure 19 shows the octet-singlet basis mixing angle,

✓ = ↵ � 54.74�, which by definition must be zero at the
SU(3)F point4 . While we have no particularly well mo-
tivated form to describe the quark mass dependence, it
is notable that the trend is for the data to approach a
phenomenologically reasonable value ⇠ �10� [1, 45–47].

F. The low-lying vector mesons: ⇢,!,�

Figure 20 shows the e↵ective masses of !,� and ⇢ prin-
cipal correlators on the m⇡ = 391MeV, 243⇥128 lattice.
The splitting between the ⇢ and ! is small but statisti-
cally significant, reflecting the small disconnected contri-
bution at large times in this channel. At the pion masses
presented in this paper, the ! and � mesons are kine-
matically stable against decay into their lowest thresh-
old channels, ⇡⇡⇡ and KK. In Figure 21 we show the
quark mass and volume dependence of the low lying vec-
tor mesons along with the relevant threshold energies.

4 Here we are using a convention where |⌘i = cos ✓|8i � sin ✓|1i,
|⌘0i = sin ✓|8i+cos ✓|1i with 8,1 having the sign conventions in
Eqn 5.
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FIG. 11: Isoscalar (green/black) and isovector (blue) meson spectrum on the m⇡ = 391MeV, 243 ⇥ 128 lattice. The vertical
height of each box indicates the statistical uncertainty on the mass determination. States outlined in orange are the lowest-lying
states having dominant overlap with operators featuring a chromomagnetic construction – their interpretation as the lightest
hybrid meson supermultiplet will be discussed later.
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since only a 163 volume was used at m⇡ = 524MeV, the
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tivated form to describe the quark mass dependence, it
is notable that the trend is for the data to approach a
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Figure 20 shows the e↵ective masses of !,� and ⇢ prin-
cipal correlators on the m⇡ = 391MeV, 243⇥128 lattice.
The splitting between the ⇢ and ! is small but statisti-
cally significant, reflecting the small disconnected contri-
bution at large times in this channel. At the pion masses
presented in this paper, the ! and � mesons are kine-
matically stable against decay into their lowest thresh-
old channels, ⇡⇡⇡ and KK. In Figure 21 we show the
quark mass and volume dependence of the low lying vec-
tor mesons along with the relevant threshold energies.

4 Here we are using a convention where |⌘i = cos ✓|8i � sin ✓|1i,
|⌘0i = sin ✓|8i+cos ✓|1i with 8,1 having the sign conventions in
Eqn 5.

Note:

ss̄
uū+ dd̄

! =
��uū+ dd̄

↵� = |ss̄i

⇡0 =
��uū� dd̄

↵
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exoticspositive paritynegative parity

JPC

42
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Exotic JPC decays

Predictions for the spectrum of hybrids from lattice, but decay 
predictions are model dependent 

Candidates for π1 state observed at multiple experiments (COMPASS, 
E852, etc.)  Recent review by Meyer and Van Haarlem (arXiv:1004:5516)


Mapping the hybrid spectrum requires: large statistics samples of many 
particle final states in strange and non-strange decay modes

43

C. A. Meyer and E. S. Swanson,  
Progress in Particle and Nuclear Physics B82, 21, (2015)

1-+ channels observed
⇡⇢ ! ⇡⇡⇡
⇡⌘0 ! ⌘⇡⇡⇡
⇡b1 ! !⇡⇡
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Exotic JPC decays

Predictions for the spectrum of hybrids from lattice, but decay 
predictions are model dependent 

Candidates for π1 state observed at multiple experiments (COMPASS, 
E852, etc.)  Recent review by Meyer and Van Haarlem (arXiv:1004:5516)


Mapping the hybrid spectrum requires: large statistics samples of many 
particle final states in strange and non-strange decay modes
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C. A. Meyer and E. S. Swanson,  
Progress in Particle and Nuclear Physics B82, 21, (2015)

1-+ channels observed Some additional 1-+ channels
⇡⇢ ! ⇡⇡⇡
⇡⌘0 ! ⌘⇡⇡⇡
⇡b1 ! !⇡⇡

⌘f1 ! ⌘⌘⇡⇡⇡a2 ! ⌘⇡⇡

KK⇤ ! KK⇡
KK1(1270) ! KK⇡⇡
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π1(1400) → ηπ 

Not likely a hybrid: dynamical origin or 4-quark state?


π1(1600) → πππ, η’π, b1π, etc. 

Not observed in ɣp → n π+π-π+ at CLAS: charge vs neutral exchange?


Clear evidence for JPC=1-+ partial waves, but interpretation unclear

Evidence for 1-+ exotics

45

Compass: PLB 740 (2015) 303

1-+ waveη’

η
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π1(1400) → ηπ 

Not likely a hybrid: dynamical origin or 4-quark state?


π1(1600) → πππ, η’π, b1π, etc. 

Not observed in ɣp → n π+π-π+ at CLAS: charge vs neutral exchange?


Clear evidence for JPC=1-+ partial waves, but interpretation unclear

Evidence for 1-+ exotics

46

Compass: PRL 104, 241803 (2010)
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Evidence for 1-+ exotics
π1(1400) → ηπ 

Not likely a hybrid: dynamical origin or 4-quark state?


π1(1600) → πππ, η’π, b1π, etc. 

Not observed in ɣp → n π+π-π+ at CLAS: charged vs neutral exchange?


Clear evidence for JPC=1-+ partial waves, but interpretation not conclusive

47

Found no exotic when using 
a larger set of partial waves 

(ie. “high wave”) than 
previous analysis

E852: PRD 73 (2006) 072001
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π1(1400) → ηπ 

Not likely a hybrid: dynamical origin or 4-quark state?


π1(1600) → πππ, η’π, b1π, etc. 

Not observed in ɣp → n π+π-π+ at CLAS: charge vs neutral exchange?


Clear evidence for JPC=1-+ partial waves, but interpretation not conclusive

Compass: 1509.00992 
Discuss non-exotic waves

Evidence for 1-+ exotics

48

Unprecedented  
statistics

Compass: PRL 104, 241803 (2010)
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π1(1400) → ηπ 

Not likely a hybrid: dynamical origin or 4-quark state?


π1(1600) → πππ, η’π, b1π, etc. 

Not observed in ɣp → n π+π-π+ at CLAS: charge vs neutral exchange?


Clear evidence for JPC=1-+ partial waves, but interpretation not conclusive

Compass: 1509.00992 
Discuss non-exotic waves

Evidence for 1-+ exotics

49

Unprecedented  
statistics

Compass: PRL 104, 241803 (2010)

Hadron 2015 
Grube: 1512.03599
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Quantum number counting

50
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2014-2015: Beam and detector 
commissioning


Spring 2016: Detector 
commissioning and first physics 
results


~10
7
 ɣ/s in coherent peak        

8.4 < Eɣ < 9 GeV


Results shown today from   
~80 hours of beam time 


Initial program: 

100 days at ~10
7 

(10x stats)


High intensity running 

200 days at ~5x10
7 

(100x stats)

51

data taking

Spring 2016 Run
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Photon Beam and Tagger

Linearly polarized photons via coherent 
bremsstrahlung from diamond radiator


Design intensity of 10  ɣ/s in coherent peak 
between Eɣ = 8.4 and 9 GeV

52

Fixed array
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“Typical” ɣp→π+π-p event

53
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Particle identification performance
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Calorimeter performance

55
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d� ⇠ 1 + P⌃ · cos2�

56

Early                   physics: ɣp→ρ0p
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Early                   physics: ɣp→ρ0p

57
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Asymmetry between polarization 
orientations (|| and    ) cancels 
detector acceptance


More complete analysis of full 
angular distributions still required

?
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ɣp→ωp asymmetry
Probe production mechanism 
through multiple decay modes


Observe expected phase shift and 
amplitude ratio for 2 decay modes

59

M⇡+⇡�⇡0

M⇡0�

�p ! ⇡+⇡�⇡0p

�p ! ⇡0�p
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Some speculative ideas to look for “structure” observed in previous 
measurements


eg. Excited vector mesons: ρ’, ω’, etc.


What can we learn without a full amplitude analysis?


Suggestions welcome!

Previous signals in photoproduction 

60

Ω’ Spectrometer at the CERN SPS: Nucl. Phys. B231, 1 (1984)

ω’?
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Some speculative ideas to look for “structure” observed in previous 
measurements


eg. Excited vector mesons: ρ’, ω’, etc.


What can we learn without a full amplitude analysis?


Suggestions welcome!

Previous signals in photoproduction 

61

BaBar:                              bb                     e+e� ! ⇡+⇡�(�)

PRL 103, 231801 (2009)

ρ’?

SLAC:                          

PRL 53, 751 (1984)

�p ! ⇡+⇡�p
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Early spectroscopy opportunities

Successfully reconstructing 5ɣ final state and observe b1 signal 
consistent with previous JLab photoproduction experiment (RadPhi)

62

�p ! b1p, b1 ! !⇡0,! ! ⇡0�

�p ! 5�p

! ! ⇡0�

b1(1235) ! !⇡0



Hadronic Physics with Lepton and Hadron Beams Justin Stevens,

                future

Lattice predicts strange and 
light quark content for mesons


Search for a pattern of hybrid 
states in many final states


Requires clean identification of 
charged pions and kaons

63
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FIG. 11: Isoscalar (green/black) and isovector (blue) meson spectrum on the m⇡ = 391MeV, 243 ⇥ 128 lattice. The vertical
height of each box indicates the statistical uncertainty on the mass determination. States outlined in orange are the lowest-lying
states having dominant overlap with operators featuring a chromomagnetic construction – their interpretation as the lightest
hybrid meson supermultiplet will be discussed later.

extrapolation might be the complex resonance pole posi-
tion, but we do not obtain this in our simple calculations
using only “single-hadron” operators.

We discuss the specific case of the 0�+ and 1�� sys-
tems in the next subsections.

E. The low-lying pseudoscalars: ⇡, ⌘, ⌘0

In lattice calculations of the type performed in this
paper, where isospin is exact and electromagnetism does
not feature, the ⇡ and ⌘ mesons are exactly stable and ⌘0

is rendered stable since its isospin conserving ⌘⇡⇡ decay
mode is kinematically closed. Because of this, many of
the caveats presented in Section III B do not apply. Fig-
ure 17 shows the quality of the principal correlators from
which we extract the meson masses, in the form of an
e↵ective mass,

me↵ =
1

�t
log

�(t)

�(t+ �t)
, (16)

for the lightest quark mass and largest volume consid-
ered. The e↵ective masses clearly plateau and can be
described at later times by a constant fit which gives a
mass in agreement with the two exponential fits to the
principal correlator that we typically use.

Figure 18 indicates the detailed quark mass and vol-
ume dependence of the ⌘ and ⌘0 mesons. We have already
commented on the unexplained sensitivity of the ⌘0 mass

to the spatial volume atm⇡ = 391MeV, and we note that
since only a 163 volume was used at m⇡ = 524MeV, the
mass shown there may be an underestimate.
Figure 19 shows the octet-singlet basis mixing angle,

✓ = ↵ � 54.74�, which by definition must be zero at the
SU(3)F point4 . While we have no particularly well mo-
tivated form to describe the quark mass dependence, it
is notable that the trend is for the data to approach a
phenomenologically reasonable value ⇠ �10� [1, 45–47].

F. The low-lying vector mesons: ⇢,!,�

Figure 20 shows the e↵ective masses of !,� and ⇢ prin-
cipal correlators on the m⇡ = 391MeV, 243⇥128 lattice.
The splitting between the ⇢ and ! is small but statisti-
cally significant, reflecting the small disconnected contri-
bution at large times in this channel. At the pion masses
presented in this paper, the ! and � mesons are kine-
matically stable against decay into their lowest thresh-
old channels, ⇡⇡⇡ and KK. In Figure 21 we show the
quark mass and volume dependence of the low lying vec-
tor mesons along with the relevant threshold energies.

4 Here we are using a convention where |⌘i = cos ✓|8i � sin ✓|1i,
|⌘0i = sin ✓|8i+cos ✓|1i with 8,1 having the sign conventions in
Eqn 5.
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states having dominant overlap with operators featuring a chromomagnetic construction – their interpretation as the lightest
hybrid meson supermultiplet will be discussed later.

extrapolation might be the complex resonance pole posi-
tion, but we do not obtain this in our simple calculations
using only “single-hadron” operators.

We discuss the specific case of the 0�+ and 1�� sys-
tems in the next subsections.

E. The low-lying pseudoscalars: ⇡, ⌘, ⌘0

In lattice calculations of the type performed in this
paper, where isospin is exact and electromagnetism does
not feature, the ⇡ and ⌘ mesons are exactly stable and ⌘0

is rendered stable since its isospin conserving ⌘⇡⇡ decay
mode is kinematically closed. Because of this, many of
the caveats presented in Section III B do not apply. Fig-
ure 17 shows the quality of the principal correlators from
which we extract the meson masses, in the form of an
e↵ective mass,

me↵ =
1
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log

�(t)

�(t+ �t)
, (16)

for the lightest quark mass and largest volume consid-
ered. The e↵ective masses clearly plateau and can be
described at later times by a constant fit which gives a
mass in agreement with the two exponential fits to the
principal correlator that we typically use.

Figure 18 indicates the detailed quark mass and vol-
ume dependence of the ⌘ and ⌘0 mesons. We have already
commented on the unexplained sensitivity of the ⌘0 mass

to the spatial volume atm⇡ = 391MeV, and we note that
since only a 163 volume was used at m⇡ = 524MeV, the
mass shown there may be an underestimate.
Figure 19 shows the octet-singlet basis mixing angle,

✓ = ↵ � 54.74�, which by definition must be zero at the
SU(3)F point4 . While we have no particularly well mo-
tivated form to describe the quark mass dependence, it
is notable that the trend is for the data to approach a
phenomenologically reasonable value ⇠ �10� [1, 45–47].

F. The low-lying vector mesons: ⇢,!,�

Figure 20 shows the e↵ective masses of !,� and ⇢ prin-
cipal correlators on the m⇡ = 391MeV, 243⇥128 lattice.
The splitting between the ⇢ and ! is small but statisti-
cally significant, reflecting the small disconnected contri-
bution at large times in this channel. At the pion masses
presented in this paper, the ! and � mesons are kine-
matically stable against decay into their lowest thresh-
old channels, ⇡⇡⇡ and KK. In Figure 21 we show the
quark mass and volume dependence of the low lying vec-
tor mesons along with the relevant threshold energies.

4 Here we are using a convention where |⌘i = cos ✓|8i � sin ✓|1i,
|⌘0i = sin ✓|8i+cos ✓|1i with 8,1 having the sign conventions in
Eqn 5.

ss̄
uū+ dd̄
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Strangeness program

Mapping the hybrid spectrum requires: large statistics 
samples of many particle final states in strange and non-
strange decay modes


Experimentally access to strangeness content of the state by 
comparing strange vs non-strange decay modes

64

JPC

exotics

ss̄
uū+ dd̄
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Experimentally infer quark 
flavor composition through 
branching ratios to strange and 
non-strange decays


Consistent with lattice QCD 
mixing angle for 2++, and 
predictions for hybrids 


Need capability to detect 
strange and non-strange to 
infer hybrid flavor content

65

Strangeness program: decay patterns

ss̄
uū+ dd̄B(f2(1270) ! ⇡⇡)

B(f2(1270) ! KK)
⇡ 20
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Strangeness program: Y(2175)

Y(2175) JPC=1-- state observed by 3 experiments


Decay pattern similar to Y(4260) in charmonium


Is it a supernumerary state in the strangeonium 
spectrum?  Possibly a hybrid?

66

Belle: BES III: 

Y (2175) ! �⇡+⇡� Y (4260) ! J/ ⇡+⇡�

e+e� ! �⇡+⇡�(�) J/ ! ⌘�⇡+⇡�

PRD 80, 031101(R) (2009)

PRD 91, 052017 (2015)
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                DIRC upgrade

barrel
calorimeter

time-of
-flight

forward calorimeter 

photon beam

electron
beamelectron

beam

superconducting
magnet 

target

tagger magnet

tagger to detector distance
is not to scale

diamond
wafer

GlueX

central drift
chamber

forward drift
chambers

start
counter

DIRC

The GlueX DIRC (Detection of Internally Reflected Cherenkov light) uses 
recycled components of the BaBar DIRC 


Extends K/π separation, allowing GlueX to study mesons and baryons 
containing strange quarks

Cherenkov Photon “Ring” 


