

Gue results and overview of pentaquark searches

Justin Stevens

+ PHOTON BEAMS!

Gue results and overview of pentaquark searches

Justin Stevens

Observed mesons and baryons well described by 1st principles QCD

But these aren't the only states permitted by QCD

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN California Institute of Technology, Pasadena, California

Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc.

Phys. Lett. 8 (1964) 214

Observed mesons and baryons well described by 1st principles QCD

But these aren't the only states permitted by QCD

Observed mesons and baryons well described by 1st principles QCD

But these aren't the only states permitted by QCD

Do gluonic degrees of freedom manifest themselves in the bound states we observe in nature?

Hybrid mesons and gluonic excitations

- * Excited gluonic field coupled to $q\bar{q}$ pair
- * Rich spectrum of hybrid mesons predicted by Lattice QCD
- * Gluonic field with $J^{PC} = 1^{+-}$ and mass = 1-1.5 GeV

Hybrid mesons and gluonic excitations

- * Excited gluonic field coupled to $q\bar{q}$ pair
- * Rich spectrum of hybrid mesons predicted by Lattice QCD
- * Gluonic field with $J^{PC} = 1^{+-}$ and mass = 1-1.5 GeV
- * "Exotic" ${\sf J}^{\sf PC}$: not simple $q\bar{q}$ from the non-rel. quark model

Hadronic Physics with Lepton and Hadron Beams

Justin Stevens, WILLIAM & MARY 11

* Ideally look for a pattern of hybrid states in multiple decay modes

* Primary goal of the GlueX experiment is to search for and ultimately map out the spectrum of light quark hybrid mesons

Jefferson Lab 12 GeV Upgrade

- Upgrade maximum electron
 beam energy from 6 to 12 GeV
- * Add new experimental Hall D add new hall D with a dedicated photon beam 5 new cryomodules double cryo upgrade capacity existing Halls add arc upgrade magnets and power supplies 5 new cryomodules

Hadronic Physics with Lepton and Hadron Beams

- * Linearly polarized photon beam from CEBAF 12 GeV
- * Large acceptance detector for both charged and neutral particles

Exotic J^{PC} in photoproduction

	Approximate	J^{PC}
	Mass (MeV)	
π_1	1900	1^{-+}
η_1	2100	1^{-+}
η_1'	2300	1^{-+}
b_0	2400	0^{+-}
h_0	2400	0^{+-}
h_0'	2500	0^{+-}
b_2	2500	2^{+-}
h_2	2500	2^{+-}
h_2'	2600	2^{+-}

Possible quantum numbers from Vector Meson Dominance and t-channel exchange: (I^G)J^{PC}

P = Pomeron exchange

Exotic J^{PC} in photoproduction

- * Can couple to all states in the lightest hybrid multiplet through t-channel exchange and photoproduction (via Vector Meson Dominance)
- * Photon beam polarization filters the "naturality" of the exchange particle

Non-exotic J^{PC} in photoproduction

* Understand non-exotic production mechanism first

* Linear photon beam polarization critical to filter out "naturality" of the exchange particle

Hadronic Physics with Lepton and Hadron Beams

Hadronic Physics with Lepton and Hadron Beams

Justin Stevens, WILLIAM & MARY 21

γp \rightarrow π⁰p beam asymmetry Σ

* Beam asymmetry Σ provides insight into dominant production mechanism

$$\Sigma = \frac{|\omega + \rho|^2 - |h + b|^2}{|\omega + \rho|^2 + |h + b|^2}$$

- Understanding production mechanism critical to disentangling J^{PC} of observed states in exotic hybrid search
- From experimental standpoint easily extended to γp→ηp
 - * No previous measurements!

JPAC: Mathieu et al. PRD 92, 074013

First 12 GeV publication!

Hadronic Physics with Lepton and Hadron Beams

- * Dip in multiple theory predictions not observed
- Indication of vector
 exchange dominance at this energy
- * Additional asymmetry measurements ongoing with larger dataset

Phys. Rev. C 95, 042201(R) First 12 GeV publication!

- * Enhancement consistent with earlier SLAC measurement, but ~100x more statistics with early GlueX data
- * Polarization observables will provide further insight into the nature of this enhancement

Early spectroscopy opportunities

Guix ηπ⁰ mass

3

M(4γ) [GeV]

3.5

- Previous photoproduction
 data very sparse for channels
 with multiple neutrals particles
- * Preliminary studies are already showing interesting features

a (1320)

1.5

2

2.5

0.5

a₀(980)

600

400

200

0₀

- * Already studying polarization observables for "simple" final states
- * Beginning to identify known mesons in multi-particle final states

J/ψ photoproduction at JLab

- Threshold J/ψ provides information on the gluon distributions in the nucleon
- * Planned measurements in Hall A, B and C
- * First data from Hall D already under analysis

Pentaquark searches at JLab

Hadronic Physics with Lepton and Hadron Beams

Pentaquark Search in Hall C

Observation of charm at GLUE

Summary

- * The GlueX detector has completed commissioning and the initial physics program has begun
- * First 12 GeV publication from the Spring 2016 data has implications for the meson production mechanism
- * Program of threshold J/ψ measurements in all four halls to search for LHCb pentaquark

Hadronic Physics with Lepton and Hadron Beams

Backup

Exotic J^{PC} decays

C. A. Meyer and E. S. Swanson, Progress in Particle and Nuclear Physics B82, 21, (2015)

	Approximate	J^{PC}	Total Widt	h MeV	Allowed Decay Modes
	Mass (MeV)		\mathbf{PSS}	IKP	
π_1	1900	1-+	81 - 168	117	$b_1\pi, \pi\rho, \pi f_1, \pi\eta, \pi\eta', \eta a_1, \pi\eta(1295)$
η_1	2100	1^{-+}	59 - 158	107	$\pi a_1, \pi a_2, \eta f_1, \eta f_2, \pi \pi (1300), \eta \eta', KK_1^A, KK_1^B$
η_1'	2300	1^{-+}	95 - 216	172	$KK_1^B, KK_1^A, KK^*, \eta\eta'$
b_0	2400	0^{+-}	247 - 429	665	$\pi\pi(1300), \pi h_1, \rho f_1, \eta b_1$
h_0	2400	0^{+-}	59 - 262	94	$\pi b_1, \eta h_1, KK(1460)$
h_0'	2500	0^{+-}	259 - 490	426	$KK(1460), KK_1^A, \eta h_1$
b_2	2500	2^{+-}	5 - 11	248	$\pi a_1, \pi a_2, \pi h_1, \eta \rho, \eta b_1, \rho f_1$
h_2	2500	2^{+-}	4 - 12	166	$\pi ho, \pi b_1, \eta \omega, \omega b_1$
h_2'	2600	2^{+-}	5 - 18	79	$KK_1^B, KK_1^A, KK_2^*, \eta h_1$

* Predictions for the spectrum of hybrids from lattice, but decay predictions are model dependent

1⁻⁺ channels observed

$$\pi \rho \to \pi \pi \pi$$
$$\pi \eta' \to \eta \pi \pi \pi$$
$$\pi b_1 \to \omega \pi \pi$$

Exotic J^{PC} decays

C. A. Meyer and E. S. Swanson, Progress in Particle and Nuclear Physics B82, 21, (2015)

	Approximate	J^{PC}	Total Widt	h MeV	Allowed Decay Modes
	Mass (MeV)		\mathbf{PSS}	IKP	
π_1	1900	1-+	81 - 168	117	$b_1\pi, \pi\rho, \pi f_1, \pi\eta, \pi\eta', \eta a_1, \pi\eta(1295)$
η_1	2100	1^{-+}	59 - 158	107	$\pi a_1, \pi a_2, \eta f_1, \eta f_2, \pi \pi (1300), \eta \eta', KK_1^A, KK_1^B$
η_1'	2300	1^{-+}	95 - 216	172	$KK_1^B, KK_1^A, KK^* \eta\eta'$
b_0	2400	0^{+-}	247 - 429	665	$\pi\pi(1300), \pi h_1, \rho f_1, \eta b_1$
h_0	2400	0^{+-}	59 - 262	94	$\pi b_1, \eta h_1, KK(1460)$
h_0'	2500	0^{+-}	259 - 490	426	$KK(1460), KK_1^A, \eta h_1$
b_2	2500	2^{+-}	5 - 11	248	$\pi a_1, \pi a_2, \pi h_1, \eta \rho, \eta b_1, \rho f_1$
h_2	2500	2^{+-}	4 - 12	166	$\pi ho, \pi b_1, \eta \omega, \omega b_1$
h_2'	2600	2^{+-}	5 - 18	79	$KK_1^B, KK_1^A, KK_2^*, \eta h_1$

* Predictions for the spectrum of hybrids from lattice, but decay predictions are model dependent

1⁻⁺ channels observed

$$\begin{aligned} \pi \rho &\to \pi \pi \pi \\ \pi \eta' &\to \eta \pi \pi \pi \\ \pi b_1 &\to \omega \pi \pi \end{aligned}$$

Some additional 1⁻⁺ channels

$$\pi a_2 \to \eta \pi \pi \quad \eta f_1 \to \eta \eta \pi \pi$$
$$KK^* \to KK\pi$$
$$KK_1(1270) \to KK\pi\pi$$

Hadronic Physics with Lepton and Hadron Beams

***** π₁(1400) → ηπ

- * Not likely a hybrid: dynamical origin or 4-quark state?
- * π₁(1600) → πππ, η'π, b₁π, etc.

Compass: PLB 740 (2015) 303

***** π₁(1400) → ηπ

- * Not likely a hybrid: dynamical origin or 4-quark state?
- * π₁(1600) → πππ, η'π, b₁π, etc.

Compass: PRL 104, 241803 (2010)

∗ π₁(1400) → ηπ

- * Not likely a hybrid: dynamical origin or 4-quark state?
- * π₁(1600) → πππ, η'π, b₁π, etc.

Found no exotic when using a larger set of partial waves (ie. "high wave") than previous analysis

* **Not** observed in $\gamma p \rightarrow n \pi^+ \pi^- \pi^+$ at CLAS: charged vs neutral exchange?

***** π₁(1400) → ηπ

* Not likely a hybrid: dynamical origin or 4-quark state?

* π₁(1600) → πππ, η'π, b₁π, etc.

* Clear evidence for J^{PC}=1⁻⁺ partial waves, but interpretation not conclusive

***** π₁(1400) → ηπ

* Not likely a hybrid: dynamical origin or 4-quark state?

* π₁(1600) → πππ, η'π, b₁π, etc.

Quantum number counting

- * 2014-2015: Beam and detector commissioning
- Spring 2016: Detector commissioning and first physics results
 - * $\sim 10^7$ g/s in coherent peak 8.4 < Eg < 9 GeV
 - Results shown today from ~80 hours of beam time
- * Initial program:
 - * 100 days at $\sim 10^{7}$ (10x stats)
- * High intensity running
 - * 200 days at ~5x10⁷ (100x stats)

Particle identification performance

Calorimeter performance

PHYSICAL REVIEW D

VOLUME 7, NUMBER 11

1 JUNE 1973

Vector-Meson Production by Polarized Photons at 2.8, 4.7, and 9.3 GeV*

J. Ballam, G. B. Chadwick, Y. Eisenberg, † E. Kogan, † K. C. Moffeit, P. Seyboth, ‡

I. O. Skillicorn, § H. Spitzer, and G. Wolf**

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

H. H. Bingham, W. B. Fretter, W. J. Podolsky,^{‡‡} M. S. Rabin,^{‡‡} A. H. Rosenfeld, and G. Smadja^{§§} University of California and Lawrence Berkeley Laboratory, Berkeley, California 94720

(Received 13 November 1972)

Hadronic Physics with Lepton and Hadron Beams

PHYSICAL REVIEW D

VOLUME 7, NUMBER 11

1 JUNE 1973

Vector-Meson Production by Polarized Photons at 2.8, 4.7, and 9.3 GeV*

J. Ballam, G. B. Chadwick, Y. Eisenberg, † E. Kogan, † K. C. Moffeit, P. Seyboth, ‡

I. O. Skillicorn, § H. Spitzer, and G. Wolf**

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

H. H. Bingham, W. B. Fretter, W. J. Podolsky,^{‡‡} M. S. Rabin,^{‡‡} A. H. Rosenfeld, and G. Smadja^{§§} University of California and Lawrence Berkeley Laboratory, Berkeley, California 94720

(Received 13 November 1972)

Hadronic Physics with Lepton and Hadron Beams

Justin Stevens, WILLIAM & MARY 57

$\gamma p \rightarrow \rho^0 p$ asymmetry

- ★ Asymmetry between polarization orientations (|| and ⊥) cancels detector acceptance
- More complete analysis of full angular distributions still required

$\gamma p \rightarrow \omega p$ asymmetry

- * Probe production mechanism through multiple decay modes
- * Observe expected phase shift and amplitude ratio for 2 decay modes

Previous signals in photoproduction

- * Some speculative ideas to look for "structure" observed in previous measurements
- * eg. Excited vector mesons: ρ' , ω' , etc.

Ω' Spectrometer at the CERN SPS: Nucl. Phys. B231, 1 (1984)

Previous signals in photoproduction

* Some speculative ideas to look for "structure" observed in previous measurements

Early spectroscopy opportunities $\gamma p \to 5\gamma p$

* Successfully reconstructing 5γ final state and observe b₁ signal consistent with previous JLab photoproduction experiment (RadPhi)

Hadronic Physics with Lepton and Hadron Beams

Justin Stevens, WILLIAM \mathcal{CM} MARY 62

- * Lattice predicts strange and light quark content for mesons
- Search for a pattern of hybrid states in many final states
- Requires clean identification of charged pions and kaons

	Approximate	J^{PC}	Final States
	Mass (MeV)		
π_1	1900	1^{-+}	$\omega\pi\pi^{\dagger}, 3\pi^{\dagger}, 5\pi, \eta 3\pi^{\dagger}, \eta'\pi^{\dagger}$
η_1	2100	1^{-+}	$4\pi, \eta 4\pi, \eta \eta \pi \pi^{\dagger}$
η_1'	2300	1^{-+}	$KK\pi\pi^{\dagger}, KK\pi^{\dagger}, KK\omega^{\dagger}$

Hadronic Physics with Lepton and Hadron Beams

Justin Stevens, WILLIAM & MARY 63

Strangeness program	3000	exotics
$J^{PC} $	2500 2000 M/m 1500	$ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & &$

- * Mapping the hybrid spectrum requires: large statistics samples of many particle final states in strange and nonstrange decay modes
- * Experimentally access to strangeness content of the state by comparing strange vs non-strange decay modes

Strangeness program: decay patterns

 Experimentally infer quark flavor composition through branching ratios to strange and non-strange decays

$$\frac{\mathcal{B}(f_2'(1525) \to \pi\pi)}{\mathcal{B}(f_2'(1525) \to KK)} \approx 0.009$$
$$\frac{\mathcal{B}(f_2(1270) \to \pi\pi)}{\mathcal{B}(f_2(1270) \to KK)} \approx 20 -$$

- Consistent with lattice QCD mixing angle for 2⁺⁺, and predictions for hybrids
- Need capability to detect strange and non-strange to infer hybrid flavor content

Strangeness program: Y(2175)

- * The GlueX DIRC (Detection of Internally Reflected Cherenkov light) uses recycled components of the BaBar DIRC
- * Extends K/π separation, allowing GlueX to study mesons and baryons containing strange quarks