³He as a laboratory to study neutron structure from elastic form factors to transverse momentum parton distributions

Emanuele Pace – Università di Roma "Tor Vergata" and INFN, Roma Tor Vergata, Italy

Alessio Del Dotto – INFN, Roma, Italy and TJLAB, USA

Leonid Kaptari – JINR, Dubna, Russia

Giovanni Salmè – INFN, Roma, Italy

Sergio Scopetta – Università di Perugia and INFN, Sezione di Perugia, Italy

 3 He as a laboratory to study neutron structure from elastic form factors to transverse momentum parton distributions – p.1/37

Outline

- Polarized ³He as an effective polarized neutron
- Neutron magnetic form factor from ${}^{3}\vec{He}(\vec{e},e')$
- Longitudinal asymmetry $A_{\vec{n}}$ and g_1^n from ³He: problems
 - SIDIS off ³He and information on the **neutron** parton structure
 - A **distorted spectral function** which includes the final state interaction between the observed pion and the remnant
 - Extraction of Collins and Sivers neutron asymmetries from ³He Del Dotto, Kaptari, E. P., Salmè, Scopetta, PRC 89 (2014) 035206; arXiv:1704.06182
 - Spectator SIDIS ${}^3ec{ ext{He}}(ec{e},e'\,{}^2 ext{H})X
 ightarrow\,g_1^p$ for a bound proton
- A Poincarè covariant spectral function for ³He in the light-front dynamics Del Dotto, E. P., Salmè, Scopetta, PR C95 (2017) 014001
- Conclusions and Perspectives

Hadronic Physics with Lepton and Hadron Beams - September 6^{th} , 2017

Forthcoming 12 GeV Experiments at TJLAB

SIDIS regime on polarized ³He , e.g.

Hall A, http://hallaweb.jlab.org/12GeV/

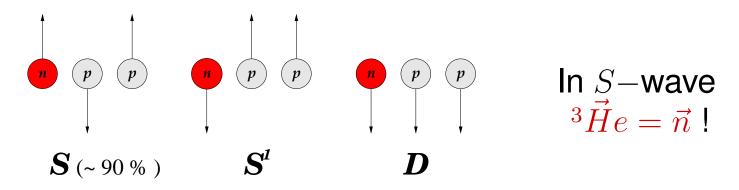
H. Gao et al, PR12-09-014 (Rating A): Target Single-Spin Asymmetry in Semi-Inclusive Deep-Inelastic $(e, e'\pi^{\pm})$ Reaction on a Transversely Polarized ³He Target at 8.8 and 11 GeV

J.P. Chen et al, PR12-11-007 (Rating A): Asymmetries in Semi-Inclusive Deep-Inelastic $(e, e'\pi^{\pm})$ Reactions on a Longitudinally Polarized ³He Target www.jlab.org/jinhuang/12GeV/12GeVLongitudinalHe3.pdf

Cates G. et al., E12-09-018, JLAB approved experiment : Target Single-Spin Asymmetries in Semi-Inclusive Pion and Kaon Electroproduction on a Transversely Polarized ³He Target hallaweb.jlab.org/collab/PAC/PAC38/E12 - 09 - 018 - SIDIS.pdf

The neutron information from ³He

³He is the ideal target to study the polarized neutron:



... But the bound nucleons in 3 He are moving!

Dynamical nuclear effects can be evaluated with a realistic spin-dependent spectral function for ${}^{3}\vec{H}e$, $P_{\sigma,\sigma',M}(\vec{p},E)$. E. g. in inclusive DIS (${}^{3}\vec{H}e(\vec{e},e')X$) it was found that the formula

$$A_{n} \simeq \frac{1}{p_{n}d_{n}} \left(A_{3}^{exp} - 2p_{p}d_{p}A_{p}^{exp} \right) , \quad (Ciofi \ degli \ Atti \ et \ al., PRC48(1993)R968)$$

can be used \longrightarrow widely used by experimental collaborations. d_p, d_n are *dilution* factors and the nuclear effects are hidden in the "effective polarizations"

 $p_p = -0.023$ (Av18) $p_n = 0.878$ (Av18)

 3 He as a laboratory to study neutron structure from elastic form factors to transverse momentum parton distributions – p.4/37 Hadronic Physics with Lepton and Hadron Beams - September 6th, 2017

Neutron magnetic form factor from ${}^{3}\vec{He}(\vec{e}, e')$

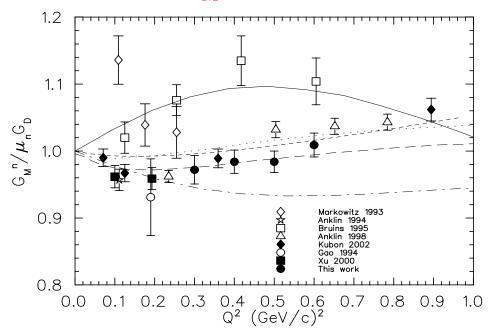
Xu et al. PRC 85 (2000), PRC 67 (2003); Anderson et al. PRC 75 (2007)

 $A = (\sigma^+ - \sigma^-)/(\sigma^+ + \sigma^-)$ σ^{\pm} differential cross section for quasi-elastic scattering of electrons with helicity $h = \pm 1$ from polarized ³He.

 $A_{T'} = -\frac{\nu_{T'}R_{T'}}{\nu_L R_L + \nu_T R_T}, \qquad \text{transverse asymmetry} \\ \text{target spin along } \boldsymbol{q}$

spin-dependent response function ν_k kinematical factors $R_{T'}$

$$R_{T'} \propto p_n (G_M^n)^2 + 2p_p (G_M^p)^2 \implies A_{T'} \left[(G_M^n)^2 \right] = \frac{1 + a (G_M^n)^2}{b + c (G_M^n)^2} \quad a >> 1, \ b > c$$



 G_M^n was obtained through a comparison with theoretical calculations

For $Q^2 = 0.1$ and $0.2 (GeV/c)^2$ a Faddeev ${}^{3}He$ wave function including FSI and MEC was used.

For Q^2 from 0.3 to 0.6 $(GeV/c)^2$ a **PWIA** calculation with relativistic kinematics was used.

Reasonable agreement with the more recent deuterium measurements.

 3 He as a laboratory to study neutron structure from elastic form factors to transverse momentum parton distributions – p.5/37

DIS from ³He - longitudinal asymmetry - g_1^n

convolution approach Ciofi degli Atti et al., PRC 48 (1993) R968

$$A_{||} = \frac{\sigma_{\uparrow\uparrow} - \sigma_{\uparrow\downarrow}}{\sigma_{\uparrow\uparrow} + \sigma_{\uparrow\downarrow}} = 2x \frac{g_1^A(x)}{F_2^A(x)} \equiv A_{\bar{A}}$$

 $\sigma_{\uparrow\uparrow(\uparrow\downarrow)}$ differential cross section for target spin parallel (antiparallel) to electron spin

 $x = Q^2/2M\nu$ Bjorken variable g_1^A and F_2^A spin-dependent and spin-independent structure functions of the target

in the Bjorken limit
$$(\nu/|\mathbf{q}| \to 1)$$
 $g_1^A(x) = \sum_N \int_x^A dz \; \frac{1}{z} \; g_1^N\left(\frac{x}{z}\right) G^N(z)$

 $G^{N}(z)$ spin-dependent light cone momentum distribution

$$G^{N}(z) = \int dE \int d\mathbf{p} \left\{ P_{||}^{N}(\mathbf{p}, E) - \left[1 - \frac{p_{||}}{E_{p} + M} \right] \frac{|\mathbf{p}|}{M} \mathcal{P}^{N}(\mathbf{p}, E) \right\} \delta\left(z - \frac{p \cdot q}{M\nu} \right)$$

$$P_{||}^{N}(\mathbf{p}, E) = P_{\frac{1}{2}\frac{1}{2}M}^{N}(\mathbf{p}, E) - P_{-\frac{1}{2}-\frac{1}{2}M}^{N}(\mathbf{p}, E) , \quad P_{\perp}^{N}(\mathbf{p}, E) = 2P_{\frac{1}{2}-\frac{1}{2}M}^{N}(\mathbf{p}, E)e^{i\phi}$$

$$\mathcal{P}^{N}(\mathbf{p}, E) = \sin\alpha P_{\perp}^{N}(\mathbf{p}, E) + \cos\alpha P_{||}^{N}(\mathbf{p}, E)$$

 3 He as a laboratory to study neutron structure from elastic form factors to transverse momentum parton distributions – p.6/37 Hadronic Physics with Lepton and Hadron Beams - September 6th, 2017

Neutron asymmetry $A_{\vec{n}}$ and g_1^n from ³He

Ciofi degli Atti et al., PRC 48 (1993) R968

 $G^{p(n)}(z)$ resemble a δ function around $z = 1 \longrightarrow$ approximate formulas

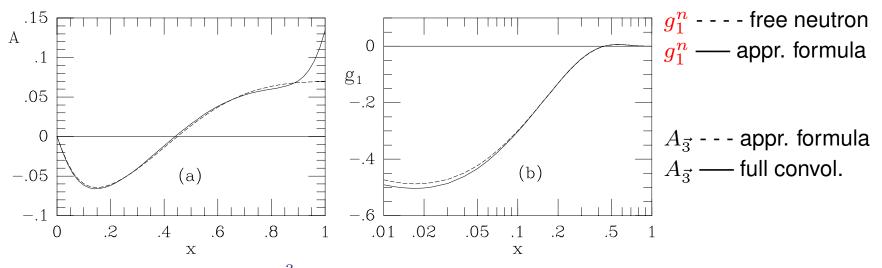
 $g_1^{3He}(x) = 2p_p g_1^p(x) + p_n g_1^n(x) \qquad A_{3\vec{H}e} = 2d_p p_p A_{\vec{p}} + d_n p_n A_{\vec{n}}$

 $A_{\vec{p}(\vec{n})} = 2xg_1^{p(n)}/F_2^{p(n)}$ proton (neutron) asymmetry $d_{p(n)} = F_2^{p(n)}/(2F_2^p + F_2^n)$ proton (neutron) dilution factor

The nuclear effects are hidden in the "effective polarizations"

$$p_{p} = P_{p}^{+} - P_{p}^{-} \qquad p_{n} = P_{n}^{+} - P_{n}^{-} \qquad P_{N}^{\pm} = \int P_{\pm \frac{1}{2} \pm \frac{1}{2}, \frac{1}{2}}^{N}(\mathbf{p}, E) \, d\mathbf{p} dE$$

The formula $g_{1}^{n} \simeq \frac{1}{p_{n}} \left(g_{1}^{3He} - 2p_{p}g_{1}^{p}\right) \qquad can \ be \ used$



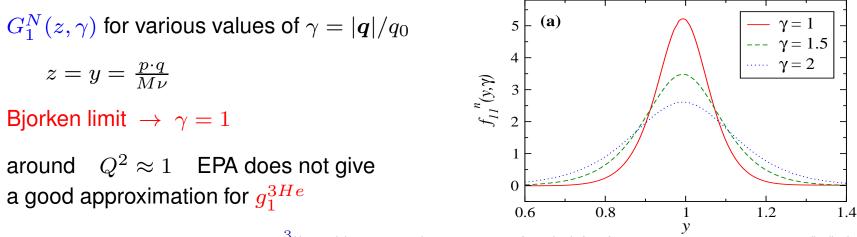
 3 He as a laboratory to study neutron structure from elastic form factors to transverse momentum parton distributions – p.7/37

applications and problems

The effective polarization approximation (EPA) has been widely used by experimental collaborations to extract g_1^n from measurements of g_1^{3He} : P. L. Anthony *et al.*, Phys. Rev. D 54, 6620 (1996); K. Ackerstaff *et al.*, Phys. Lett. B 404, 383 (1997); K. Abe *et al.*, Phys. Rev. Lett. 79, 26 (1997); M. Amarian *et al.*, Phys. Rev. Lett. 92, 022301 (2004).

F. Bissey *et al.* [Phys. Rev. C 65, 064317 (2002)] suggested that EPA cannot give a precise description of g_1^{3He} : shadowing, antishadowing and more important the Δ in the ^{3}He nucleus should be included. These effects were considered by X. Zheng *et al.*, Phys. Rev. C 70, 065207 (2004) and by K. Kramer *et al.*, Phys. Rev. Lett. 95, 142002 (2005).

The relevance of finite values of Q^2 instead of the Bjorken limit in the light cone momentum distribution G_1^N in the region around $Q^2 \approx 1$ was stressed by Kulagin and Melnitchouk [Phys. Rev. C 78, 065203 (2008)].



³He as a laboratory to study neutron structure from elastic form factors to transverse momentum parton distributions – p.8/37

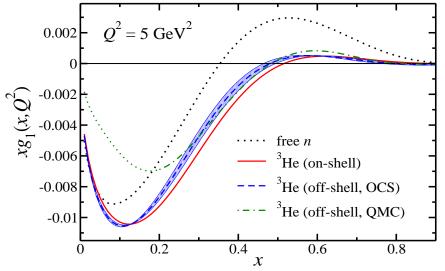
g_1^n from ³He

problems II - Δ components and nuclear off-shell corrections

Ethier and Melnitchouk [Phys. Rev. C 88, 054001(2013)], following Bissey *et al.*, showed that at $Q^2 = 5 \ GeV^2$ the Δ gives a negative contribution to g_1^{3He} . This contribution is offset by the positive nucleon off-shell correction obtained through p^2 dependent light-cone distributions G_{ij}^N and nucleon structure functions g_j^N : (i, j = 1, 2)

$$g_i^{^{3}\text{He}}(x,Q^2) = \int \frac{dy}{y} \int dp^2 \left[2G_{ij}^p(y,\gamma,p^2) g_j^p(\frac{x}{y},Q^2,p^2) + G_{ij}^n(y,\gamma,p^2) g_j^n(\frac{x}{y},Q^2,p^2) \right]$$

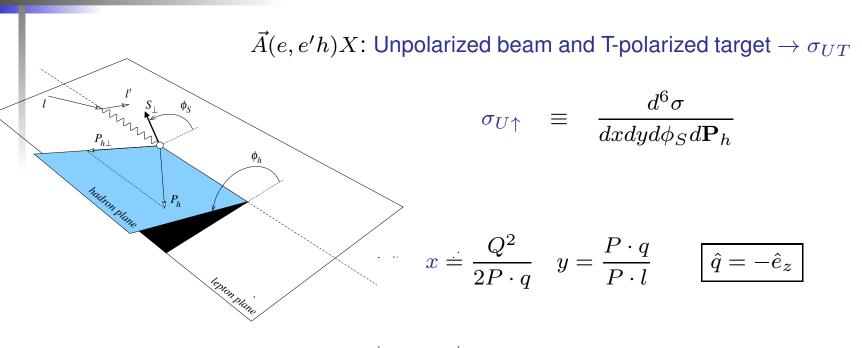
The off-shell corrections generated by two different models for the nucleon structure functions are similar in sign and magnitude and were found to cancel somewhat the effects of the Δ contribution bringing the total ³*He* structure functions closer to the on-shell result.



Furthermore they found that at $Q^2 = 5 \ GeV^2$ EPA gives a reasonable approximation for g_1^{3He} .

Single Spin Asymmetries (SSAs) with a

detected π



The number of emitted hadrons at a given ϕ_h depends on the orientation of $ec{S}_+$! In SSAs 2 different mechanisms can be experimentally distinguished

$$A_{UT}^{Sivers(Collins)} = \frac{\int d\phi_S d^2 P_{h\perp} \sin(\phi_h - (+)\phi_S) \sigma_{UT}}{\int d\phi_S d^2 P_{h\perp} \sigma_{UU}}$$

 $\sigma_{UT} = \frac{1}{2}(\sigma_{U\uparrow} - \sigma_{U\downarrow}) \qquad \qquad \sigma_{UU} = \frac{1}{2}(\sigma_{U\uparrow} + \sigma_{U\downarrow})$ with

 3 He as a laboratory to study neutron structure from elastic form factors to transverse momentum parton distributions – p.10/37 Hadronic Physics with Lepton and Hadron Beams - September 6th, 2017

SSAs \rightarrow the neutron \rightarrow ³He

SSAs for a nucleon in terms of

 $h_1^{q,N}$, $f_{1T}^{\perp q,N}$, $f_1^{q,N}$ transversity, Sivers and unpolarized parton distributions and $H_1^{\perp q,h}$, $D_1^{q,h}$ fragmentation functions:

$$\begin{split} \bullet & A_{UT}^{Sivers} = \Delta \sigma_S^N \left(x, Q^2 \right) / \sigma^N \qquad A_{UT}^{Collins} = \Delta \sigma_C^N \left(x, Q^2 \right) / \sigma^N \\ \Delta \sigma_C^N &= \frac{1-y}{1-y+y^2/2} \times \\ & \sum_q e_q^2 \int d^2 \kappa_{\mathbf{T}} d^2 \mathbf{k}_{\mathbf{T}} \delta^2 (\mathbf{k}_{\mathbf{T}} + \mathbf{q}_{\mathbf{T}} - \kappa_{\mathbf{T}}) \, \frac{\hat{h}_{\perp} \cdot \kappa_{\mathbf{T}}}{m_h} h_1^{q,N} (x, \mathbf{k}_{\mathbf{T}}^{-2}) \, H_1^{\perp q,h} (z, (z\kappa_{\mathbf{T}})^2) \, , \\ \Delta \sigma_S^N &= \sum_q e_q^2 \int d^2 \kappa_{\mathbf{T}} d^2 \mathbf{k}_{\mathbf{T}} \delta^2 (\mathbf{k}_{\mathbf{T}} + \mathbf{q}_{\mathbf{T}} - \kappa_{\mathbf{T}}) \, \frac{\hat{h}_{\perp} \cdot \mathbf{k}_{\mathbf{T}}}{m_N} f_{1T}^{\perp q,N} (x, \mathbf{k}_{\mathbf{T}}^{-2}) \, D_1^{q,h} (z, (z\kappa_{\mathbf{T}})^2) \, , \\ \sigma^N (x, Q^2) &= \sum_q e_q^2 \int d^2 \kappa_{\mathbf{T}} d^2 \mathbf{k}_{\mathbf{T}} \delta^2 (\mathbf{k}_{\mathbf{T}} + \mathbf{q}_{\mathbf{T}} - \kappa_{\mathbf{T}}) \, f_1^{q,N} (x, \mathbf{k}_{\mathbf{T}}^{-2}) \, D_1^{q,h} (z, (z\kappa_{\mathbf{T}})^2) \, , \end{split}$$

LARGE A^{Sivers} measured in $\vec{p}(e, e'\pi)x$: HERMES PRL 94, 012002 (2005)
 SMALL A^{Sivers} measured in $\vec{D}(e, e'\pi)x$: COMPASS PRL 94, 202002 (2005)
 A strong flavor dependence confirmed by recent data PRL 107 (2011)
 Importance of the neutron for flavor decomposition!

³He as a laboratory to study neutron structure from elastic form factors to transverse momentum parton distributions – p.11/37 Hadronic Physics with Lepton and Hadron Beams - September 6^{th} , 2017

\vec{n} from ${}^{3}\vec{H}e$: SiDIS case ${}^{3}\vec{H}e(e,e'\pi)X$

The process was first evaluated in IA [S.Scopetta, PRD 75 (2007) 054005]:

→ no FSI between the measured fast, ultrarelativistic π the remnant debris and the two nucleon recoiling system $E_{\pi} \simeq 2.4 \ GeV$ in JLAB exp at $6 \ GeV$ - Qian et al., PRL 107 (2011) 072003

SSAs involve convolutions of the transverse light-cone momentum distributions f_N^{\perp} (m.d. for a transversely polarized nucleon in a transversely polarized nucleus) with parton distributions AND fragmentation functions :

$$A_3^{C(S)} = \frac{\int_x^A d\alpha \left[\Delta \sigma_{C(S)}^n \left(x/\alpha, Q^2 \right) f_n^{\perp}(\alpha, Q^2) + 2\Delta \sigma_{C(S)}^p \left(x/\alpha, Q^2 \right) f_p^{\perp}(\alpha, Q^2) \right]}{\int d\alpha \left[\sigma^n \left(x/\alpha, Q^2 \right) f_n(\alpha, Q^2) + 2\sigma^p \left(x/\alpha, Q^2 \right) f_p(\alpha, Q^2) \right]}$$

$$f_N^{\perp}(\alpha, Q^2) = \int dE \int \frac{m_N}{E_N} P_N^{\perp}(E, \mathbf{p}) \,\delta\left(\alpha - \frac{p \cdot q}{m_N \nu}\right) \,\theta\left(W_Y^2 - (m_N + m_\pi)^2\right) d^3\mathbf{p}$$

 W_Y invariant mass of hadronizing debris

The nuclear effects were studied using the transverse spectral function $P_N^{\perp}(E, \mathbf{p})$ for a transv. polarized nucleon in a transv. polarized nucleus and models for $f_{1T}^{\perp q}$, $D_1^{q,h}$...

\vec{n} from ${}^{3}\vec{H}e$: SiDIS case

Ingredients of the calculations :

A realistic spin-dependent spectral function of 3 He (C. Ciofi degli Atti et al., PRC 46 (1992) R 1591; A. Kievsky et al., PRC 56 (1997) 64) obtained using the AV18 interaction and the wave functions evaluated by the Pisa group [A. Kievsky et al., NPA 577 (1994) 511] (small effects from 3-body interactions)

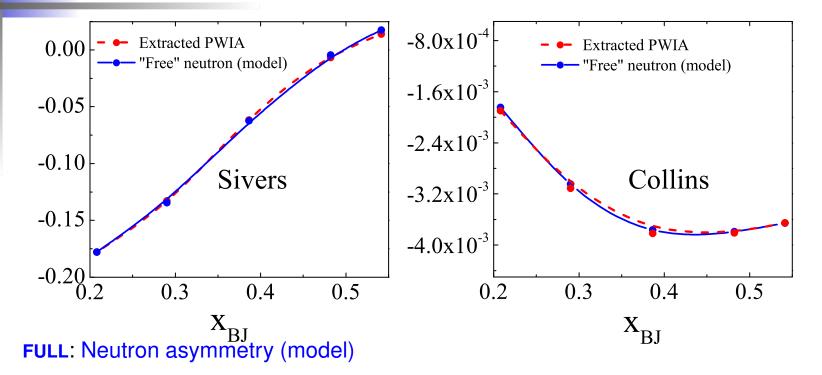
Parametrizations of data for pdfs and fragmentation functions whenever available: $f_1^q(x, \mathbf{k_T^2})$, Glueck et al., EPJ C (1998) 461, $f_{1T}^{\perp q}(x, \mathbf{k_T}^2)$, Anselmino et al., PRD 72 (2005) 094007, $D_1^{q,h}(z,(z\kappa_{\mathbf{T}})^2)$, Kretzer, PRD 62 (2000) 054001

Models for the unknown pdfs and fragmentation functions: $h_1^q(x, \mathbf{k_T}^2)$, Glueck et al., PRD 63 (2001) 094005, $H_1^{\perp q,h}(z,(z\kappa_{\mathbf{T}})^2)$ Amrath et al., PRD 71 (2005) 114018

Results will be model dependent. Anyway, the aim for the moment is to study nuclear effects.

 3 He as a laboratory to study neutron structure from elastic form factors to transverse momentum parton distributions – p.13/37 Hadronic Physics with Lepton and Hadron Beams - September 6th, 2017

\vec{n} from ${}^{3}\vec{H}e$: A_{UT}^{S} , A_{UT}^{C} @JLab in IA (E = 8.8 GeV)



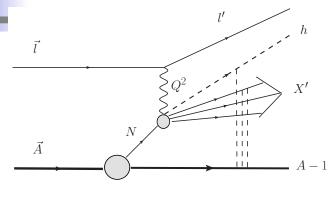
DASHED : Neutron asymmetry extracted from ${}^{3}He$ (calculation) taking into account nuclear structure effects through the formula:

The extraction procedure successful in DIS works also in SiDIS, for both Collins and Sivers SSAs !

 3 He as a laboratory to study neutron structure from elastic form factors to transverse momentum parton distributions – p.14/37

FSI: Generalized Eikonal Approximation (GEA)

Del Dotto, Kaptari, Pace, Salmè, Scopetta, PRC 89 (2014) 035206; arXiv:1704.06182



Relative energy between A - 1 and the remnants: a few GeV \longrightarrow eikonal approximation

$$d\sigma \simeq l^{\mu\nu} W^A_{\mu\nu}(S_A)$$

$$W^A_{\mu\nu}(S_A) \approx \sum_{A-1,Y} J^A_\mu J^A_\nu$$

$$J^{A}_{\mu} \simeq \sum_{i=1}^{3} \langle \hat{G} \{ \Phi_{\epsilon^*_{A-1}}, \lambda', \mathbf{p}_N \} | \hat{j}_{\mu}(i) | S_A \mathbf{P} \rangle$$

 $\hat{G} = Glauber operator$

$$Y = h + X$$

 $J_{\mu}(i) \approx \int d\mathbf{r_1} d\mathbf{r_2} d\mathbf{r_3} \Psi_{23}^{*f}(\mathbf{r_2}, \mathbf{r_3}) e^{-i\mathbf{p_Y r_1}} \chi_{S_Y}^+ \phi^*(\xi_Y) \cdot \hat{G}(\mathbf{r_1}, \mathbf{r_2}, \mathbf{r_3}) \hat{j}_{\mu}(\mathbf{r_1}) \Psi_3^{\mathbf{S}_A}(\mathbf{r_1}, \mathbf{r_2}, \mathbf{r_3})$

$$\mathsf{F} \qquad \begin{bmatrix} \hat{\mathbf{G}}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3), \hat{j}_{\mu}(\mathbf{r}_1) \end{bmatrix} = 0 \qquad \mathsf{THEN} \quad (FACTORIZED \ \mathsf{FSI} \ ! \):$$
$$W^A_{\mu\nu} = \sum_{N,\lambda,\lambda'} \int dE \, d\mathbf{p} \, \frac{m_N}{E_N} \, w^{N,\lambda\lambda'}_{\mu\nu}(\mathbf{p}) \, P^{FSI}_{N \ \lambda\lambda'}(E, \mathbf{p}, ...) \qquad CONVOLUTION$$

nucleon tensor $w_{\mu\nu}^{N,\lambda\lambda'}(\mathbf{p}) \approx \sum \langle p,\lambda'|\hat{j}_{\mu}^{N}|P_{h},X'\rangle\langle P_{h},X'|\hat{j}_{\nu}^{N}|p,\lambda\rangle\delta^{4}\left(q+p-P_{h}-P_{X'}\right)d\tau_{X'}$ $\frac{X'}{3}$ He as a laboratory to study neutron structure from elastic form factors to transverse momentum parton distributions – p.15/37 Hadronic Physics with Lepton and Hadron Beams - September 6th, 2017

FSI: distorted spin-dependent spectral function of ³He

Kaptari, Del Dotto, Pace, Salmè, Scopetta, PRC 89 (2014) 035206; arXiv:1704.06182

Relevant part of the GEA-distorted spectral function for transverse asymmetries:

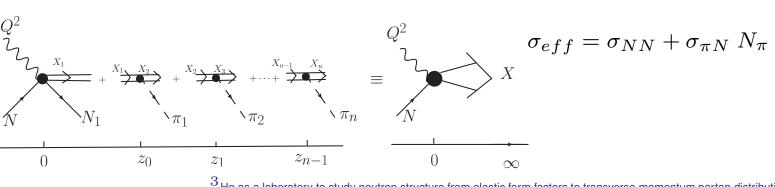
$$P_{N}^{\perp,FSI}(E,\mathbf{p}) \equiv \Re e \left[P_{N\frac{1}{2}-\frac{1}{2}}^{FSI\frac{1}{2}-\frac{1}{2}}(E,\mathbf{p}) + P_{N\frac{1}{2}-\frac{1}{2}}^{FSI-\frac{1}{2}\frac{1}{2}}(E,\mathbf{p}) \right] \quad \text{with}$$

$$P_{N,\lambda\lambda'}^{FSIM,M'}(E,\mathbf{p}) = \sum_{f_{A-1}} \sum_{\epsilon_{A-1}} \rho \left(\epsilon_{A-1}^{*} \right) \langle M', \mathbf{P}_{\mathbf{A}} | \hat{G} \{ \Phi_{\epsilon_{A-1}}^{f_{A-1}}, \lambda', \mathbf{p}_{N} \} \rangle \times$$

$$\langle \hat{G} \{ \Phi_{\epsilon_{A-1}}^{f_{A-1}}, \lambda, \mathbf{p}_{N} \} | M, \mathbf{P}_{\mathbf{A}} \rangle \delta \left(E - B_{A} - \epsilon_{A-1}^{*} \right) \quad M, M' : polarizations along \mathbf{q}$$

Glauber operator: $\hat{G}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3) = \prod_{i=2,3} \left[1 - \theta(z_i - z_1) \Gamma(\mathbf{b}_{i1}, z_{i1}], \mathbf{r}_i \equiv (\mathbf{b}_i, z_i) \right]$ gener. profile function: $\Gamma(\mathbf{b}_{i1}, z_{i1}) = \frac{(1 - i\eta) \sigma_{eff}(z_{i1})}{4 \pi b_0^2} \exp \left[-\frac{\mathbf{b}_{i1}^2}{2 b_0^2} \right], \mathbf{r}_{i1} = \mathbf{r}_i - \mathbf{r}_1$

(hadronization model: Kopeliovich et al., NPA 2004; σ_{eff} model: Ciofi & Kopeliovich, EPJA 2003; successfull application to unpolarized ${}^{2}H(e,e'p)X$: Ciofi & Kaptari PRC 2011)



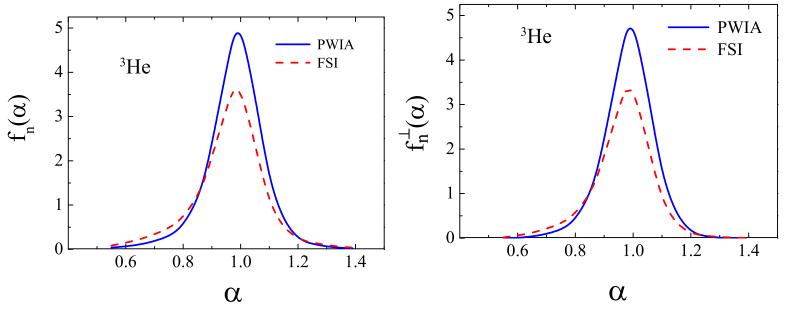
³He as a laboratory to study neutron structure from elastic form factors to transverse momentum parton distributions – p.16/37 Hadronic Physics with Lepton and Hadron Beams - September 6^{th} , 2017

FSI: distorted spin-dependent spectral function of ³He

Kaptari, Del Dotto, Pace, Salmè, Scopetta, PRC 89 (2014) 035206; arXiv:1704.06182

- While P^{IA} depends on ground state properties, P^{FSI} is process dependent: for each experimental point $(x, Q^2...)$ a different P^{FSI} has to be evaluated !
 - P^{FSI} : a really cumbersome quantity, a very demanding evaluation (\approx 1 Mega CPU*hours @ "Zefiro" PC-farm, PISA, INFN "gruppo 4").

 \mathcal{P}^{IA} and \mathcal{P}^{FSI} , as well as the unpolarized and the transverse light-cone momentum distributions f_N^{IA} and f_N^{FSI} can be very different (JLAB kinematics - \mathcal{E} =8.8 GeV)



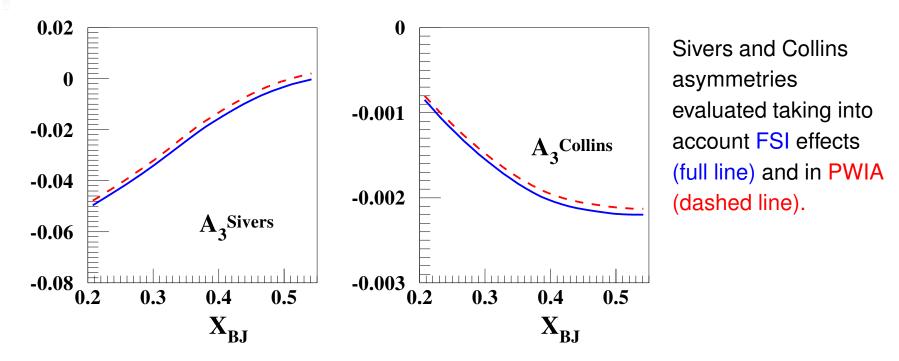
FSI's have therefore a strong effect on the spin-dependent and spin-independent SIDIS cross sections $\alpha = p \cdot q / m_N \nu$

 3 He as a laboratory to study neutron structure from elastic form factors to transverse momentum parton distributions – p.17/37 Hadronic Physics with Lepton and Hadron Beams - September 6th, 2017

FSI effects on asymmetries, polarizations and dilution factors

In asymmetries light-cone m. d. f_N appear in the numerator and in the denominator

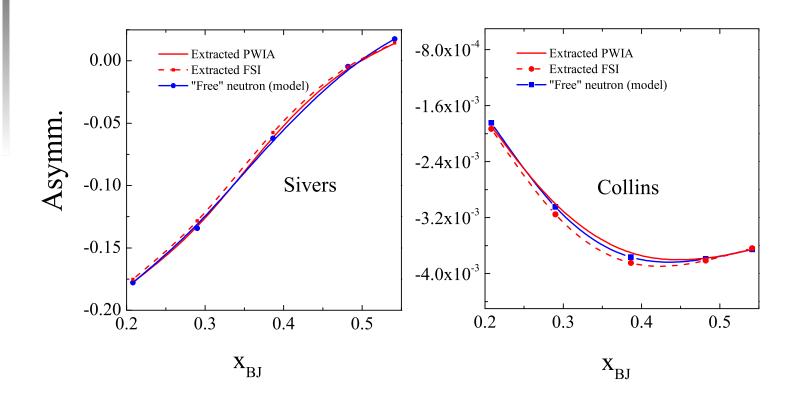
$$A_3^{C(S)} = \frac{\int_x^A d\alpha \left[\Delta \sigma_{C(S)}^n \left(x/\alpha, Q^2 \right) f_n^\perp(\alpha, Q^2) + 2\Delta \sigma_{C(S)}^p \left(x/\alpha, Q^2 \right) f_p^\perp(\alpha, Q^2) \right]}{\int d\alpha \left[\sigma^n \left(x/\alpha, Q^2 \right) f_n(\alpha, Q^2) + 2\sigma^p \left(x/\alpha, Q^2 \right) f_p(\alpha, Q^2) \right]}$$



FSI's change effective polarizations $p_{p(n)}$ by 10-15 %, but the products $p_{p(n)}^{FSI} d_{p(n)}^{FSI}$ and $p_{p(n)}^{IA} d_{p(n)}^{IA}$ are essentially the same. $d_N = \sigma^N / (N_n \sigma^n + 2N_p \sigma^p)$ $N_N = \int d\alpha f_N(\alpha)$

 3 He as a laboratory to study neutron structure from elastic form factors to transverse momentum parton distributions – p.18/37 Hadronic Physics with Lepton and Hadron Beams - September 6th, 2017

Good news from GEA studies of FSI!



Effects of GEA-FSI (shown at $E_i = 8.8 \text{ GeV}$) in the dilution factors and in the effective polarizations compensate each other to a large extent: the usual extraction is safe!

$$A_n \approx \frac{1}{p_n^{FSI} d_n^{FSI}} \left(A_3^{FSI} - 2p_p^{FSI} d_p^{FSI} A_p^{exp} \right) \approx \frac{1}{p_n^{IA} d_n^{IA}} \left(A_3^{IA} - 2p_p^{IA} d_p^{IA} A_p^{exp} \right)$$

A. Del Dotto, L. Kaptari, E. Pace, G. Salmè, S. Scopetta, arXiv:1704.06182, submitted to PRC

 3 He as a laboratory to study neutron structure from elastic form factors to transverse momentum parton distributions – p.19/37 Hadronic Physics with Lepton and Hadron Beams - September 6th, 2017

Spectator SIDIS ${}^{3}\vec{\mathrm{He}}(\vec{e},e'\,{}^{2}\mathrm{H})X \rightarrow g_{1}^{p}$ for a bound proton

Kaptari, Del Dotto, Pace, Salme', Scopetta PRC 89, 035206 (2014)

The distorted spin-dependent spectral function of ³He with the Glauber operator \hat{G} can be used to study the "spectator SIDIS" process, where a slowly recoiling two-nucleon system is detected.

Final goal \longrightarrow polarized parton distribution $g_1^N(x_N = \frac{Q^2}{2p_N q})$ of a bound nucleon. Longitudinal asymmetry of electrons with opposite helicities scattered off a longitudinally polarized ³He for parallel kinematics ($\mathbf{p}_N = -\mathbf{p}_{mis} \equiv -\mathbf{P}_{A-1} \parallel \hat{z}$, with $\hat{z} \equiv \hat{\mathbf{q}}$)

$$\frac{\Delta\sigma^{\hat{\mathbf{S}}_{A}}}{d\varphi_{e} \, dx \, dy \, d\mathbf{P}_{D}} \equiv \frac{d\sigma^{\hat{\mathbf{S}}_{A}}(h_{e}=1) - d\sigma^{\hat{\mathbf{S}}_{A}}(h_{e}=-1)}{d\varphi_{e} \, dx \, dy \, d\mathbf{P}_{D}} = \\ \approx 4 \frac{\alpha_{em}^{2}}{Q^{2} z_{N} \mathcal{E}} \frac{m_{N}}{E_{N}} \, g_{1}^{p} \left(\frac{x}{z}\right) \mathcal{P}_{||}^{\frac{1}{2}}(\mathbf{p}_{mis}) \mathcal{E}(2-y) \left[1 - \frac{|\mathbf{p}_{mis}|}{m_{N}}\right] \qquad Bjorken \ limit$$

 $\begin{aligned} x &= \frac{Q^2}{2m_N\nu}, \quad y = (\mathcal{E} - \mathcal{E}')/\mathcal{E}, \quad z = (p_N \cdot q)/m_N\nu \\ \mathcal{P}_{||}^{\frac{1}{2}}(\mathbf{p}_{mis}) &= \mathcal{O}_{\frac{1}{2}\frac{1}{2}}^{\frac{1}{2}} - \mathcal{O}_{-\frac{1}{2}-\frac{1}{2}}^{\frac{1}{2}\frac{1}{2}} \quad \text{parallel component of the spectral function} \\ \mathcal{O}_{\lambda\lambda'}^{\mathcal{M}\mathcal{M}'(FSI)}(\mathbf{P}_{\mathbf{D}}, E_{2bbu}) &= \left\langle \hat{G} \left\{ \Psi_{\mathbf{P}_D}, \lambda, \mathbf{p}_N \right\} |\Psi_A^{\mathcal{M}} \right\rangle_{\hat{\mathbf{q}}} \left\langle \Psi_A^{\mathcal{M}'} | \hat{G} \left\{ \Psi_{\mathbf{P}_D}, \lambda', \mathbf{p}_N \right\} \right\rangle_{\hat{\mathbf{q}}} \end{aligned}$

For a detected pp pair the neutron structure function g_1^n could be obtained.

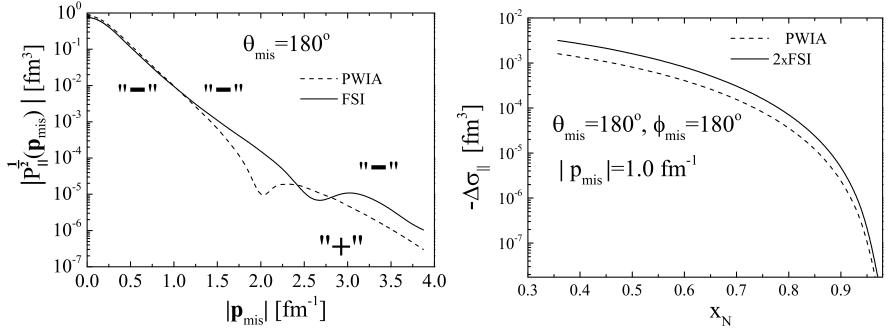
 3 He as a laboratory to study neutron structure from elastic form factors to transverse momentum parton distributions – p.20/37 Hadronic Physics with Lepton and Hadron Beams - September 6th, 2017

Spectator SIDIS ${}^{3}\vec{\mathrm{He}}(\vec{e},e'\,{}^{2}\mathrm{H})X \rightarrow g_{1}^{p}$ for a bound proton

Kaptari, Del Dotto, Pace, Salme', Scopetta PRC 89, 035206 (2014)

The kinematical variables upon which $g_1^N(x_N)$ depends can be changed independently from the ones of the nuclear-structure $\mathcal{P}_{||}^{\frac{1}{2}}(\mathbf{p}_{mis})$. This allows to single out a kinematical region region where the final-state effects are minimized: $|\mathbf{p}_{mis} \equiv \mathbf{P}_D| \simeq 1 f m^{-1}$ Then a direct access to $g_1^N(x_N)$ is feasible.

Spectator SiDIS with a deuteron in the final state : ${}^{3}\vec{He}(\vec{e}, e' {}^{2}H)X \quad \mathcal{E} = 12 \ GeV$



However for $x \ge 0.6$ one enters the resonance region and the model of the GEA approach should be modified.

Poincarè covariance - JLAB experiments

@12 GeV

The Relativistic Hamiltonian Dynamics (RHD) of an interacting system, introduced by Dirac (1949), *plus* the Bakamijan-Thomas construction of the Poincarè generators allow one to generate a description of DIS, SIDIS, DVCS off ³He which :

- is fully Poincarè covariant
- has a fixed number of on-mass-shell constituents

The Light-Front form of RHD is adopted. It has 7 kinematical generators, a subgroup structure of the LF boosts (separation of the intrinsic motion from the global one: very important for us !) and a meaningful Fock expansion.

It allows one to take advantage of the whole successfull non-relativistic phenomenology for the nuclear interaction

A Light-Front spin-dependent Spectral Function can be defined to be used to describe DIS and SIDIS processes. It implements macroscopic locality (\equiv cluster separability): i.e. observables associated with different space-time regions commute in the limit of large spacelike separation, rather than for arbitrary (μ -locality) spacelike separations (Keister-Polyzou, Adv. Nucl. Phys. 21 (1991))

Light-Front Hamiltonian Dynamics

Among the possible forms of RHD, the Light-Front one has several advantages:

- 7 Kinematical generators: i) three LF boosts (at variance with the dynamical nature of the Instant-form boosts), ii) $\tilde{P} = (P^+, \mathbf{P}_\perp)$, iii) Rotation around the z-axis.
- The LF boosts have a subgroup structure, then one gets a trivial separation of the intrinsic motion (as in the non relativistic case).
 - $P^+ \ge 0$ leads to a meaningful Fock expansion.
- No square roots in the dynamical operator P^- , propagating the state in the LF-time.
- The IMF description of DIS is easily included.

Drawback: the transverse LF-rotations are dynamical

However, using the BT construction, one can define a *kinematical*, intrinsic angular momentum (very important for us!).

Bakamjian-Thomas construction and the

Light-Front Hamiltonian Dynamics

An explicit construction of the 10 Poincaré generators, in presence of interactions, was given by Bakamjian and Thomas (PR 92 (1953) 1300).

The key ingredient is the mass operator :

i) only the mass operator M contains the interaction;

ii) it generates the dependence upon the interaction of the three dynamical generators in LFHD, namely P^- and the LF transverse rotations \vec{F}_{\perp} ;

The mass operator is the free mass, M_0 , plus an interaction V, or $M_0^2 + U$. The interaction, U or V, must commute with all the kinematical generators, and with the non-interacting angular momentum, as in the non-relativistic case.

For the two-nucleon case it allows one to embed easily the NR phenomenology:

$$[M_0^2 + U] |\psi_D\rangle = \left[4m^2 + 4k^2 + 4mV^{NR}\right] |\psi_D\rangle = M_D^2 |\psi_D\rangle \sim \left[4m^2 - 4mB_D\right] |\psi_D\rangle$$

For the three-body case the mass operator is

$$M_{BT}(123) = M_0(123) + V_{12,3}^{BT} + V_{23,1}^{BT} + V_{31,2}^{BT} + V_{123}^{BT} \sim M^{NR}$$

where

$$M_0(123) = \sqrt{m^2 + k_1^2} + \sqrt{m^2 + k_2^2} + \sqrt{m^2 + k_3^2}$$
 is the free mass operator

³ He as a laboratory to study neutron structure from elastic form factors to transverse momentum parton distributions – p.24/37

LF Nucleon Spectral Function for ${}^{3}He$

A. Del Dotto, E. Pace, G. Salmè, S. Scopetta, PR C95 (2017) 014001

$$\mathcal{P}_{\sigma'\sigma}^{\tau_1}(\tilde{\kappa},\epsilon,S) = \rho(\epsilon) \sum_{JJ_z\alpha} \sum_{T\tau} LF \langle \tau T; \alpha,\epsilon; JJ_z; \tau_1\sigma', \tilde{\kappa} | \Psi_0; ST_z \rangle \langle ST_z; \Psi_0 | \tilde{\kappa}, \sigma\tau_1; JJ_z; \epsilon, \alpha; T\tau \rangle_{LF}$$

 $\rho(\epsilon)\equiv$ density of the t-b states: 1 for the bound state, and $m\sqrt{m\epsilon}/2$ for the excited ones

$$\begin{split} _{LF} \langle T\tau; \alpha, \epsilon; JJ_{z}; \tau_{1}\sigma, \tilde{\kappa} | j, j_{z}; \epsilon^{3}, \Pi; \frac{1}{2}T_{z} \rangle = & \sum_{\tau_{2}\tau_{3}} \int d\mathbf{k}_{23} \sum_{\sigma_{1}'} D^{\frac{1}{2}} [\mathcal{R}_{M}(\tilde{\mathbf{k}})]_{\sigma\sigma_{1}'} \times \\ & \sqrt{(2\pi)^{3} \ 2E(\mathbf{k})} \sqrt{\frac{\kappa^{+}E_{23}}{k^{+}E_{S}}} \sum_{\sigma_{2}'', \sigma_{3}''} \sum_{\sigma_{2}', \sigma_{3}'} \mathcal{D}_{\sigma_{2}'', \sigma_{2}'}(\tilde{\mathbf{k}}_{23}, \tilde{\mathbf{k}}_{2}) \mathcal{D}_{\sigma_{3}'', \sigma_{3}'}(-\tilde{\mathbf{k}}_{23}, \tilde{\mathbf{k}}_{3}) \times \\ & NR \langle T_{23}, \tau_{23}; \alpha, \epsilon_{23}; j_{23}j_{23z} | \mathbf{k}_{23}, \sigma_{2}'', \sigma_{3}''; \tau_{2}, \tau_{3} \rangle \ \langle \sigma_{3}', \sigma_{2}', \sigma_{1}'; \tau_{3}, \tau_{2}, \tau_{1}; \mathbf{k}_{23}, \mathbf{k} | j, j_{z}; \epsilon^{3}, \Pi; \frac{1}{2}T_{z} \rangle_{NR} \end{split}$$

$$\begin{aligned} \mathbf{k}_{\perp} &= \mathbf{\kappa}_{\perp}, \quad k^{+} = \xi \; M_{0}(123) = \kappa^{+} \; M_{0}(123) / \mathcal{M}_{0}(1,23) \\ \mathcal{M}_{0}(1,23) &= \sqrt{m^{2} + |\mathbf{\kappa}_{1}|^{2}} + \sqrt{M_{S}^{2} + |\mathbf{\kappa}|^{2}} \quad \text{with} \quad M_{S} = 2\sqrt{m^{2} + m\epsilon_{S}} \\ M_{0}^{2}(1,2,3) &= \frac{m^{2} + k_{\perp}^{2}}{\xi} + \frac{M_{23}^{2} + k_{\perp}^{2}}{1 - \xi} \quad \text{with} \quad M_{23} = 2\sqrt{(m^{2} + |\mathbf{k}_{23}|^{2})} \\ \mathcal{D}^{\frac{1}{2}}[\mathcal{R}_{M}(\tilde{\mathbf{k}})]_{\sigma\sigma_{1}'} \quad \text{Melosh operator} \end{aligned}$$

 3 He as a laboratory to study neutron structure from elastic form factors to transverse momentum parton distributions – p.25/37 Hadronic Physics with Lepton and Hadron Beams - September 6th, 2017

Conclusions & Perspectives

Polarized ³He targets are an essential tool for studying the neutron spin structure, both in the quasi-elastic and in the DIS region, for inclusive or semi-inclusive processes. The increasing levels of precision of polarized experiments requires a good understanding of the nuclear effects, beyond the PWIA in the Bjorken limit. E.g. FSI, Δ and nucleon off-shell effects in the nucleus are to be considered.

We studied DIS and SIDIS processes off ³He **beyond** the **NR**, **IA** approach.

FSI effects are studied by a Generalized Eikonal Approx.:

- a NR distorted spin-dependent spectral function is defined
- A procedure to extract Sivers and Collins neutron asymm.
 from ³He was shown useful, even taking into account the FSI
 . "Spectator SIDIS" processes, where a two-nucleon system is detected, could allow to obtain g_1^N for a bound nucleon.
- A Poincaré covariant description for ³He, based on the Light-front Hamiltonian Dynamics, has been proposed

- Our goal : to evaluate SIDIS cross sections off ³He with relativistic FSI, through our LF spin-dependent spectral function ³He as a laboratory to study neutron structure from elastic form factors to transverse momentum parton distributions – p.26/37

Why a relativistic treatment ?

- The Standard Model of Few-Nucleon Systems, where nucleon and pion degrees of freedom are taken into account, has achieved a very high degrees of sophistication.
- Nonetheless, one should try to fulfill, as much as possible, the relativistic constraints, dictated by the covariance with respect the Poincaré Group, \mathcal{G}_P , if processes involving nucleons with high 3-momentum are considered and a high precision is needed.

This is the case if one studies, e.g., i) the nucleon structure functions (unpolarized and polarized); ii) the nucleon TMDs, iii) signatures of short-range correlations; iv) SIDIS processes.

At least, one should carefully deal with the boosts of the nuclear states, $|\Psi_{init}\rangle$ and $|\Psi_{fin}\rangle$!

Poincaré covariance and locality

General principles to be implemented

★ Extended Poincaré covariance

 $[P^{\mu}, P^{\nu}] = 0, \quad [M^{\mu\nu}, P^{\rho}] = -i(g^{\mu\rho}P^{\nu} - g^{\nu\rho}P^{\mu}),$

$$[M^{\mu\nu}, M^{\rho\sigma}] = -i(g^{\mu\rho}M^{\nu\sigma} + g^{\nu\sigma}M^{\mu\rho} - g^{\mu\sigma}M^{\nu\rho} - g^{\nu\rho}M^{\mu\sigma})$$

and \mathcal{T} have to be taken into account ! \mathcal{P}

 \star \star Macroscopic locality (\equiv cluster separability): i.e. observables associated with different space-time regions commute in the limit of large spacelike separation, rather than for arbitrary (μ -locality) spacelike separations (Keister-Polyzou, Adv. Nucl. Phys. 21, 225 (1991))

Adopted Tool: The Dirac Relativistic Hamiltonian Dynamics in the Light-Front form

 3 He as a laboratory to study neutron structure from elastic form factors to transverse momentum parton distributions – p.28/37 Hadronic Physics with Lepton and Hadron Beams - September 6th, 2017

The BT Mass operator for A=2 and A=3

nuclei

For the two-body case, e.g. the deuteron, the Schrödinger eq. can be rewritten as follows

$$\left[4m^2 + 4k^2 + 4mV^{NR}\right] |\psi_D\rangle = \left[4m^2 - 4mB_D\right] |\psi_D\rangle$$

$$\left[M_0^2(12) + 4mV^{NR}\right] |\psi_D\rangle = \left[M_D^2 - B_D^2\right] |\psi_D\rangle \sim M_D^2 |\psi_D\rangle$$

and the identification between v_{12}^{BT} and $4mV^{NR}$ naturally stems out, disregarding correction of the order $(B_D/M_D)^2$

For the three-body case the mass operator is

 $M_{BT}(123) = M_0(123) + V_{12,3}^{BT} + V_{23,1}^{BT} + V_{31,2}^{BT} + V_{123}^{BT} \sim M^{NR}$

where

 $M_0(123) = \sqrt{m^2 + k_1^2} + \sqrt{m^2 + k_2^2} + \sqrt{m^2 + k_3^2}$

is the free mass operator, with $\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3 = 0$

$$V_{123}^{BT}$$
 is a short-range three-body force

Final remark: the commutation rules impose to V^{BT} analogous properties as the ones of V^{NR} , with respect to the total 4-momentum and to the total angular momentum.

³He as a laboratory to study neutron structure from elastic form factors to transverse momentum parton distributions – p.29/37 Hadronic Physics with Lepton and Hadron Beams - September 6^{th} , 2017

The BT Mass operator for A=3 nuclei

The NR mass operator is written as

$$M^{NR} = 3m + \sum_{i=1,3} \frac{k_i^2}{2m} + V_{12}^{NR} + V_{23}^{NR} + V_{31}^{NR} + V_{123}^{NR}$$

and must obey to the commutation rules proper of the Galilean group, leading to translational invariance and independence of total 3-momentum.

Those properties are analogous to the ones in the BT construction. This allows us to consider the standard non relativistic mass operator as a sensible BT mass operator, and embed it in a Poincaré covariant approach.

$$M_{BT}(123) = M_0(123) + V_{12,3}^{BT} + V_{23,1}^{BT} + V_{31,2}^{BT} + V_{123}^{BT} \sim M^{NR}$$

The 2-body phase-shifts contain the relativistic dynamics, and the Lippmann-Schwinger

eq., like the Schrödinger one, has a suitable structure for the BT construction. Therefore

what has been learned till now, within a non relativistic framework, about the nuclear

interaction can be re-used in a Poincaré covariant framework ³He as a laboratory to study neutron structure from elastic form factors to transverse momentum parton distributions – p.30/37 Hadronic Physics with Lepton and Hadron Beams - September 6th, 2017

To complete the matter: the spin

- Coupling intrinsic spins and orbital angular momenta is easily accomplished within the Instant Form of RHD through the usual Clebsch-Gordan coefficients, since in this form the three generators of the rotations are independent of interaction.
 - To embed this machinery in the LFHD one needs unitary operators, the so-called Melosh rotations that relate the LF spin wave function and the canonical one. For a (1/2)-particle with LF momentum $\tilde{k} \equiv \{k^+, \vec{k}_{\perp}\}$

$$|s,\sigma'\rangle_{LF} = \sum_{\sigma} D^{1/2}_{\sigma,\sigma'}(R_M(\tilde{k})) |s,\sigma\rangle_{IF}$$

where

 $D^{1/2}_{\sigma \sigma'}(R_M(\tilde{k}))$ is the standard Wigner function for the J=1/2 case , $R_M(k)$ is the rotation between the rest frames of the particle reached through a LF boost or a canonical boost.

For quantities, like the Spectral Function, one can easily take care of the Melosh rotations. Schematically one has

$$O_{\sigma^{\prime\prime\prime},\sigma}^{LF} = \sum_{\sigma^{\prime\prime},\sigma^{\prime}} D_{\sigma^{\prime\prime\prime},\sigma^{\prime\prime}}^{1/2}(R_M^{\dagger}) O_{\sigma^{\prime\prime},\sigma^{\prime}}^{IF} D_{\sigma^{\prime},\sigma}^{1/2}(R_M)$$

 3 He as a laboratory to study neutron structure from elastic form factors to transverse momentum parton distributions – p.31/37 Hadronic Physics with Lepton and Hadron Beams - September 6th, 2017

The Light-Front Nucleon Spectral Function

Nucleon Spectral Function: probability distribution to find a nucleon with given 3-momentum, and missing energy inside the nucleus. For a polarized nucleus in a NR framework

$$P^{N}_{\sigma,\sigma',\mathcal{M}_{z}}(\vec{p},E) = \sum_{f_{(A-1)}} {}^{N}\langle \vec{p},\sigma;\psi_{f_{(A-1)}}|\psi^{A}_{J\mathcal{M}_{z}}\rangle \ \langle \psi^{A}_{J\mathcal{M}_{z}}|\psi_{f_{(A-1)}};\vec{p},\sigma'\rangle_{N} \ \delta(E-E_{f_{(A-1)}}+E_{A})$$

 $|\psi^A_{JM_z}\rangle$: ground state, eigensolution of

$$M_A^{NR} |\psi_{J\mathcal{M}_z}^A\rangle = E_A |\psi_{J\mathcal{M}_z}^A\rangle$$

 $|\psi_{f_{(A-1)}}\rangle$: a state of the (A-1)-nucleon spectator system: fully interacting

$$M_{(A-1)}^{NR} |\psi_{f_{(A-1)}}\rangle = E_{f_{(A-1)}} |\psi_{f_{(A-1)}}\rangle$$

p and *E* are the active nucleon 3-momentum and missing energy, respectively
 NR overlaps _N \lapse \$\vec{p}\$, \$\sigma\$; \$\psi_{f_{(A-1)}} | \psi_{JM_z} \rangle\$ with the same interaction in *A* and *A* - 1

 3 He as a laboratory to study neutron structure from elastic form factors to transverse momentum parton distributions – p.32/37 Hadronic Physics with Lepton and Hadron Beams - September 6th, 2017

Normalization and momentum sum rule

From the normalization of the Spectral Function one has

$$\int_0^\infty dz \; f^A_{p(n)}(z) = 1$$

Then one obtains

$$N_{A} = \frac{1}{A} \int_{0}^{\infty} dz \, \left[Z f_{p}^{A}(z) + (A - Z) f_{n}^{A}(z) \right] = 1$$
$$MSR = \frac{1}{A} \int_{0}^{\infty} dz \, z \, \left[Z f_{p}^{A}(z) + (A - Z) f_{n}^{A}(z) \right] = \frac{1}{A}$$

By using the ${}^{3}He$ wave function, corresponding to the NN interaction AV18, that was evaluated by Kievsky, Rosati and Viviani (Nucl. Phys. A551, 241 (1993)) we obtain

 $MSR_{calc} = 0.3331$

Namely, within LFHD normalization and momentum sum rule do not conflict

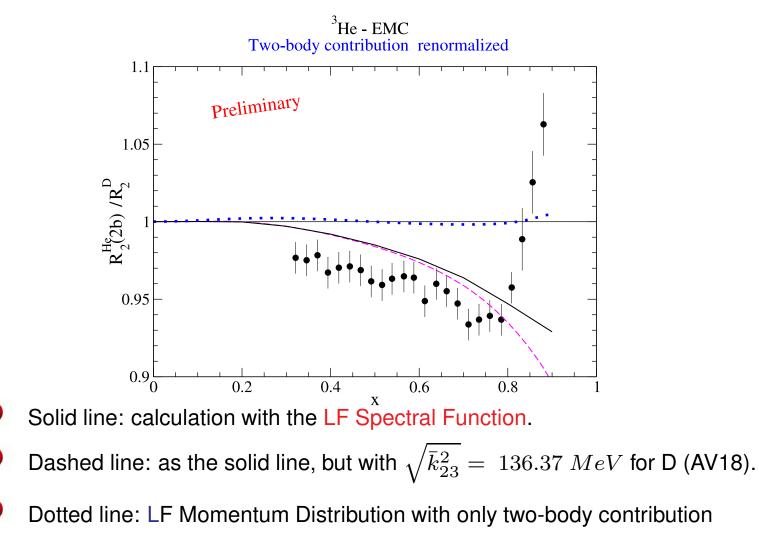
We used the Pisa group wave function to evaluate

$$R_2^A(x) = \frac{A F_2^A(x)}{Z F_2^p(x) + (A - Z) F_2^n(x)}$$

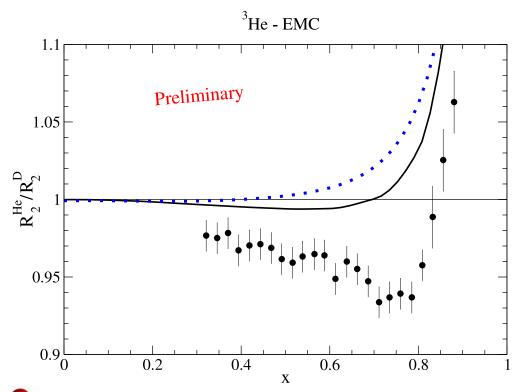
 3 He as a laboratory to study neutron structure from elastic form factors to transverse momentum parton distributions – p.33/37 Hadronic Physics with Lepton and Hadron Beams - September 6th, 2017

Preliminary Results for ³*He* **EMC effect**

We have first calculated the contribution from the 2B channel, with the spectator pair in a deuteron state



Preliminary results for ³*He* **EMC effect**



Pace, Del Dotto, Kaptari, Rinaldi, Salmè, Scopetta, Few-Body Sist. 57(2016)601

$$R_2^A(x) = \frac{A F_2^A(x)}{Z F_2^p(x) + (A - Z) F_2^n(x)}$$

Solid line: LF Spectral Function, with the exact calculation for the 2-body channel, and an average energy in the 3-body contribution: $\langle \bar{k}_{23} \rangle = 113.53 MeV$ (proton), $\langle \bar{k}_{23} \rangle = 91.27 MeV$ (neutron).

Dotted line: LF momentum distribution

Within the LF framework normalization and momentum sum rule are fulfilled automatically. Big difference from the IF approach !

 3 He as a laboratory to study neutron structure from elastic form factors to transverse momentum parton distributions – p.35/37

What about relativity in SIDIS?

GOOD preliminary NEWS

We are now going to evaluate the SSAs using the LF hadronic tensor, to check whether the proposed extraction procedure still holds within the LF approach. We have preliminary encouraging indications:

LF longitudinal and transverse polarizations change little from the NR ones:

	proton NR	proton LF	neutronNR	neutron LF
$\int dE d\vec{p} \frac{1}{2} Tr(\mathcal{P}\sigma_z)_{\vec{S}_A = \hat{z}}$	-0.02263	-0.02231	0.87805	0.87248
$\int dE d\vec{p} \frac{1}{2} Tr(\mathcal{P}\sigma_y)_{\vec{S}_A = \hat{y}}$	-0.02263	-0.02268	0.87805	0.87494

The difference between the effective longitudinal and transverse polarizations is a measure of the relativistic content of the system.

The extraction procedure should work well within the LF approach as it does in the non relativistic case.

Conclusions & Perspectives I

A Poincaré covariant description of a A=3 nucleus, based on the Light-front Hamiltonian Dynamics, has been proposed. The Bakamjian-Thomas construction of the Poincaré generators allows one to embed the successful phenomenology for few-nucleon systems in a Poincaré covariant framework.

We have evaluated the Nucleon Spectral function for ³*He*, by approximating the IF overlaps with their non relativistic counterpart calculated with the AV18 NN interaction

A first test of our approach is the EMC effect for ${}^{3}He$. We have calculated the 2-body contribution to the Nucleon SF with the full expression, while the 3-body contribution has been evaluated with an average $|\mathbf{k}_{23}|^2$. Encouraging improvements clearly appear after comparing with experimental data.

Next step : full calculation of the 3-body contribution

 3 He as a laboratory to study neutron structure from elastic form factors to transverse momentum parton distributions – p.37/37