# Finite-Energy Sum Rules:

Going high to solve low-energy issues

Jannes Nys

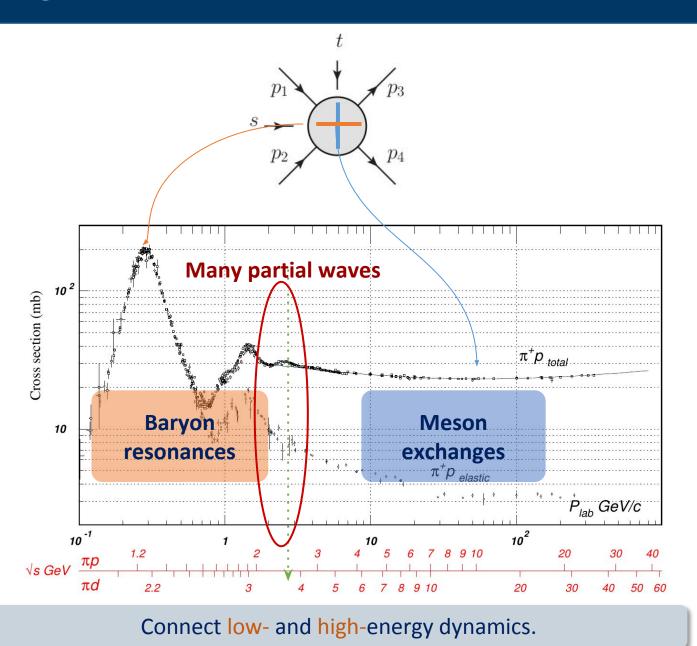
JPAC Collaboration



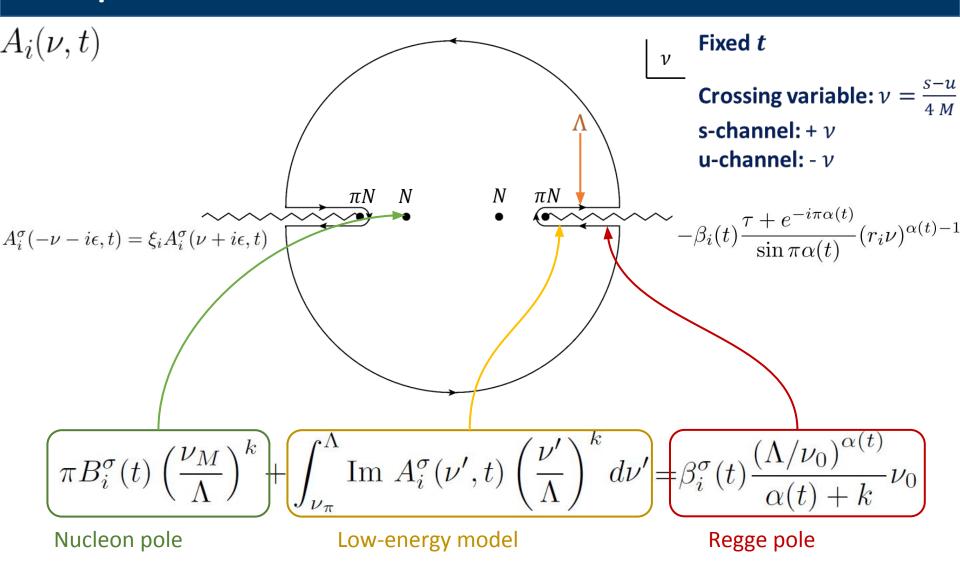




## Overview



# Dispersion relations - FESR



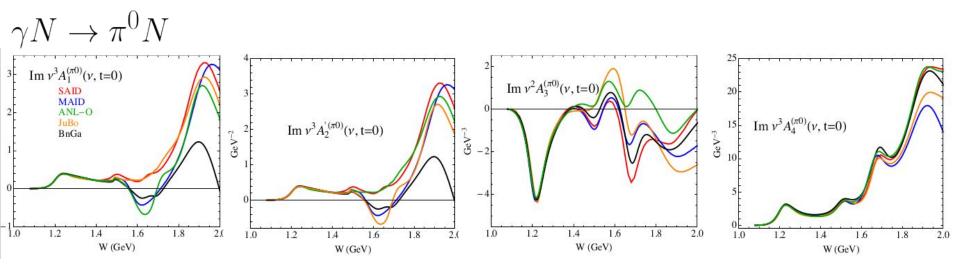
Analyticity results in Finite-Energy Sum Rules.

# Low energies

$$\int_{\nu_{\pi}}^{\Lambda} \operatorname{Im} A_{i}^{\sigma}(\nu', t) \left(\frac{\nu'}{\Lambda}\right)^{k} d\nu'$$

### Low energy models

• BnGa, Julich-Bonn, ANL-Osaka, SAID, MAID,...



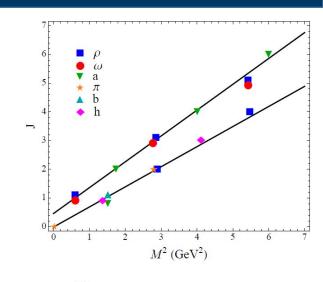
# High energies

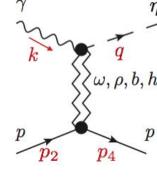
## Regge pole model

$$A_{i,R}(\nu,t) = \left(\beta_i(t)\right) \frac{\tau + e^{-i\pi\alpha(t)}}{\sin\pi\alpha(t)} (r_i \nu)^{\alpha(t)-1}$$

#### Dominant: vector exchanges

| $A_i$            | $I^G$      | $J^{PC}$                          | η  | Leading exchanges          |
|------------------|------------|-----------------------------------|----|----------------------------|
| $\overline{A_1}$ | $0^-, 1^+$ | $(1, 3, 5,)^{}$                   | +1 | $\rho(770), \omega(782)$   |
| $A_2'$           | $0^-, 1^+$ | $(1, 3, 5,)^{+-}$<br>$(2, 4,)^{}$ | -1 | $h_1(1170), b_1(1235)$     |
| $A_3$            | $0^-, 1^+$ | $(2,4,)^{}$                       | -1 | $\rho_2(??), \omega_2(??)$ |
|                  |            | $(1,3,5,)^{}$                     |    |                            |





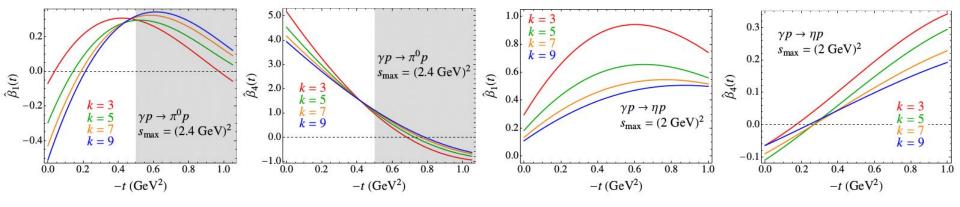
$$\gamma p \to \eta p$$
,  $A = (\omega + h + \omega_2) + (\rho + b + \rho_2)$   
 $\gamma n \to \eta n$ ,  $A = (\omega + h + \omega_2) - (\rho + b + \rho_2)$ 

 $A_2' = A_1 + tA_2$ 

# Sensitivity to k

$$\pi B_i^{\sigma}(t) \left(\frac{\nu_M}{\Lambda}\right)^k + \int_{\nu_{\pi}}^{\Lambda} \operatorname{Im} A_i^{\sigma}(\nu', t) \left(\frac{\nu'}{\Lambda}\right)^k d\nu' = \beta_i^{\sigma}(t) \frac{\left(\Lambda/\nu_0\right)^{\alpha(t)}}{\alpha(t) + k} \nu_0$$

$$\widehat{\beta}_i(t) = \frac{\alpha(t) + k}{\Lambda^{\alpha(t) + k}} \int_0^{\Lambda} \operatorname{Im} A_i^{\text{PWA}}(\nu, t) \, \nu^k \, d\nu$$



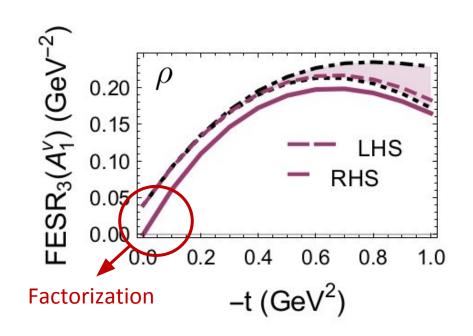
# Matching: natural exchanges

$$\left( \pi B_i^{\sigma}(t) \left( \frac{\nu_M}{\Lambda} \right)^k \right) + \left( \int_{\nu_\pi}^{\Lambda} \operatorname{Im} \ A_i^{\sigma}(\nu',t) \left( \frac{\nu'}{\Lambda} \right)^k d\nu' \right) = \left( \frac{\beta_i^{\sigma}(t) \frac{(\Lambda/\nu_0)^{\alpha(t)}}{\alpha(t) + k} \nu_0}{\alpha(t) + k} \right)$$
 Nucleon pole 
$$\text{Low-energy model}$$
 Regge pole 
$$\text{Regge pole}$$

 $\begin{array}{c} \sqrt{-t} \\ \rho/\omega \\ b/h \\ \mp \end{array}$ 

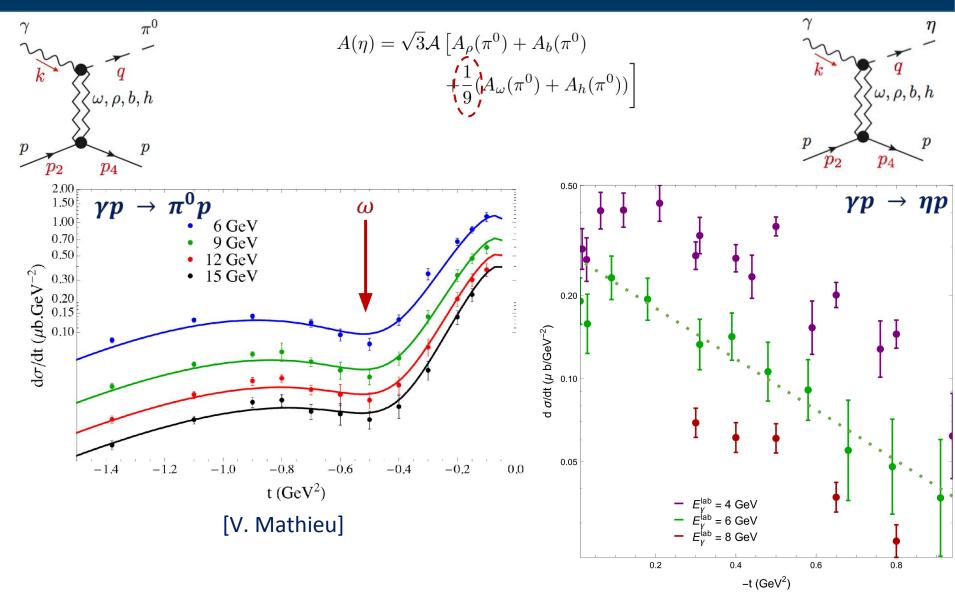
ang. mom. :  $A_1 \sim 1$ 

single pole :  $A_1 \sim t$ 



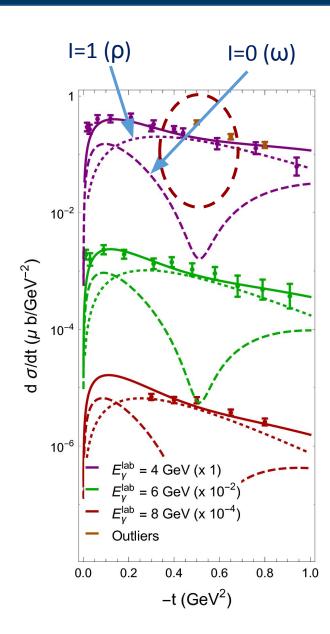
$$F_3 = 2 M_N A_1 - t A_4$$

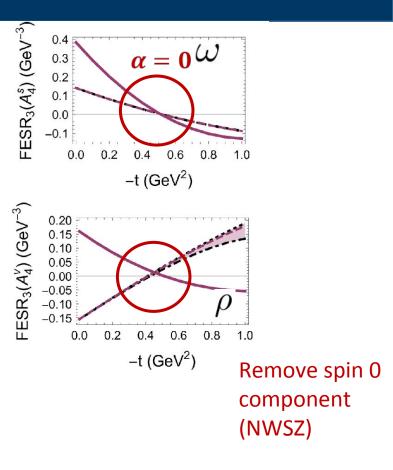
## Data

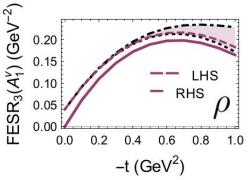


[Data: Dewire 1971, Braunschweig 1970]

## Results

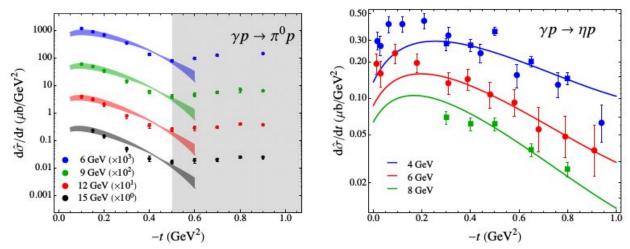




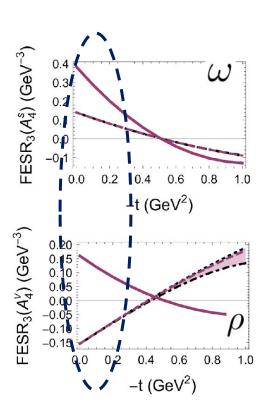


## Results

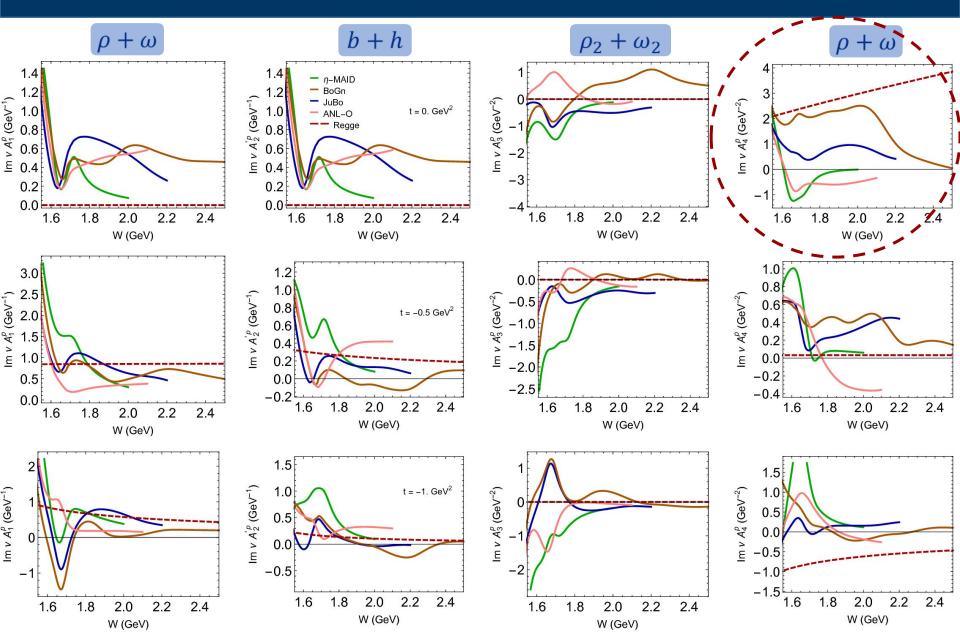
$$\widehat{\beta}_i(t) = \frac{\alpha(t) + k}{\Lambda^{\alpha(t) + k}} \int_0^{\Lambda} \operatorname{Im} A_i^{\text{PWA}}(\nu, t) \, \nu^k \, d\nu$$



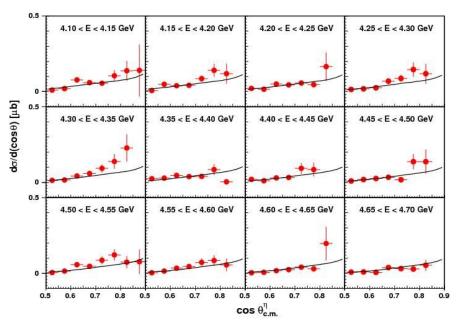
[V. Mathieu, J.N. et al. (JPAC) 1708.07779 (2017)]



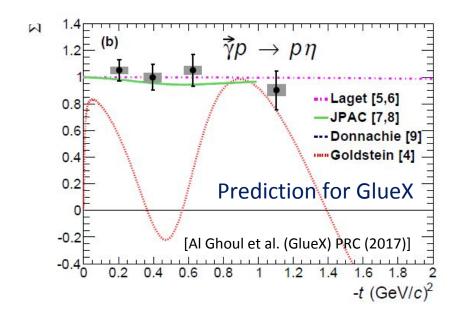
# Comparison for $\gamma p \rightarrow \eta p$



## **Predictions for GlueX & CLAS**



<u>Preliminary</u> (transition region) [Courtesy of Zulkaida Akbar (CLAS)] Natural dominant:  $\Sigma = +1$ Unnatural dominant:  $\Sigma = -1$ 



Fill up the dip with natural contribution:  $\rho$ 

# $\eta'/\eta$ beam asymmetry

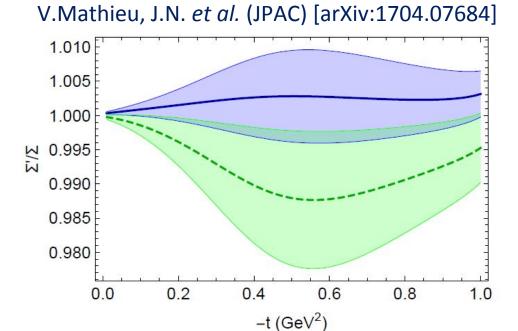
$$\Sigma^{(\prime)} = \frac{\mathrm{d}\sigma_{\perp}^{(\prime)} - \mathrm{d}\sigma_{\parallel}^{(\prime)}}{\mathrm{d}\sigma_{\perp}^{(\prime)} + \mathrm{d}\sigma_{\parallel}^{(\prime)}} \quad \text{for } \eta^{(\prime)}$$

$$\frac{\Sigma'}{\Sigma} = 1 + \frac{1 - \Sigma^2}{\Sigma} \cdot \frac{k_V - k_A}{(1 + \Sigma)k_V + (1 - \Sigma)k_A}$$

$$k_V = \frac{\mathrm{d}\sigma_{\perp}^{\prime}}{\mathrm{d}\sigma_{\perp}}, \qquad k_A = \frac{\mathrm{d}\sigma_{\parallel}^{\prime}}{\mathrm{d}\sigma_{\parallel}}.$$

#### Quark model predictions:

$$k_V = k_A = \tan^2 \varphi$$

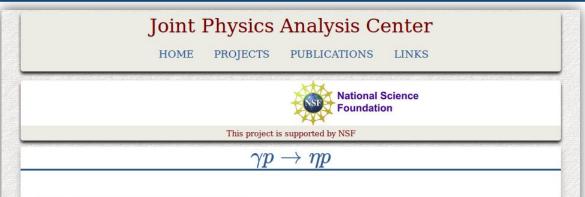


Dominant exchanges:  $\rho$ ,  $\omega$ Variations: b, h radiative decays

#### Sizable deviation from 1:

- Non-negligible contributions from hidden strangeness
- Signicant deviation from the quark model description

## JPAC website



Jannes.nys@ugent.be mathieuv@indiana.edu

We present the model published in [Nys16].

The differential cross section for  $\gamma p \to \eta p$  is computed with Regge amplitudes in the domain  $E_\gamma \ge 4$  GeV and  $0 \le -t \le 1$  (in GeV<sup>2</sup>).

We use the CGLN invariant amplitudes  $A_i$  defined in [Chew57a].

See the section Formalism for the definition of the variables.

The model and its context is detailed in [Nys16]. We report here only the features of the model.

#### **Formalism**

The differential cross section is a function of 2 kinematic variables. The laboratory frame  $E_{\gamma}$  (in GeV) or the total energy squared s (in GeV<sup>2</sup>). T scattering angle in the rest frame  $\cos\theta$  or the momentum transfered squared The momenta of the particles are k (photon), q (eta),  $p_2$  (target) and  $p_4$  (in  $\mu$  and the proton mass is  $M_N$ . The Mandelstam variables,  $s=(k+p_2)^2$ , are related through  $s+t+u=2M_N^2+\mu^2$ . Furthermore, we intro

#### November 2016:

 $\circ$  The  $\gamma p \to \eta p$  page is online.

o Publication: [Nys16]

• C/C++ observables: C-code main, Input file, C-code source, C-code header, Eta-MAID 2001 multip

• C/C++ minimal script to calculate the amplitudes: C-code zip

o Data: Dewire, Braunschweig

Contact person: Jannes Nys

Last update: November 2016

Step-by-step introduction to calculating the model amplitudes of the high-energy model.

[hide] [show]

#### Run the code

Choose the beam energy in the lab frame  $E_{\gamma}$ , the other variable (t or  $\cos \theta$ ) and its minimal, maximal, and increment values.

If you choose t (cos) only the min, max and step values of t (cos  $\theta$ ) are read.

Only physical t-values are calculated. Hence, for example t=0 will be set to  $t(\cos\theta=+1)$ . Below W=2 GeV, we use the Eta-MAID 2001 model using the lowest  $l\le 5$  multipoles. Above W=2 GeV, the Regge model is evaluated. There is no smooth transition.

| $E_{\gamma}$ in GeV $^{\circ}$ |               |      |          |   |          |      |  |
|--------------------------------|---------------|------|----------|---|----------|------|--|
| o t cos                        |               |      |          |   |          |      |  |
| $t$ in ${ m GeV}^2$ (m         | in max step)  | -1   | <b>*</b> | 0 | <b>♦</b> | 0.01 |  |
| $\cos \theta$ (m               | nin max step) | 0.85 | <b>A</b> | 1 |          | 0.01 |  |
| Start rese                     | et            |      |          |   |          |      |  |

## Summary

```
[J.N., et al. (JPAC) PRD (2017)]
[V. Mathieu, J.N. et al. (JPAC) 1708.07779 (2017)]
```

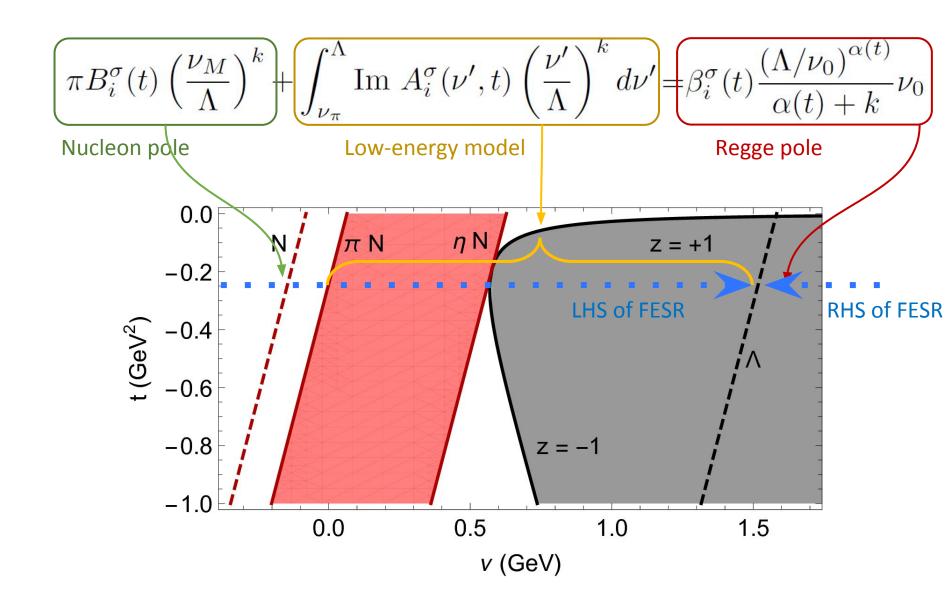
- Finite-Energy Sum Rules relate high and low energy regimes
  - Low-energy models provide detailed predictions for high-energy data
  - Information at the amplitude level
  - Ultimately: combined fit of low- and high-energy data

### [V. Mathieu, J.N., et al. (JPAC) 1704.07684]

- $\eta/\eta'$  beam asymmetry
  - Source of information about b and h radiative decays
  - Sensitive to hidden strangeness

# Backup

# Dispersion relations

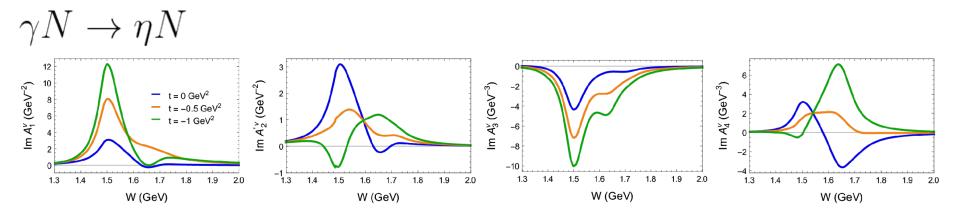


# Low energies

# $\int_{\nu_{\pi}}^{\Lambda} \operatorname{Im} A_{i}^{\sigma}(\nu', t) \left(\frac{\nu'}{\Lambda}\right)^{k} d\nu'$

### Low energy models

• BnGa, Julich-Bonn, ANL-Osaka, SAID, MAID



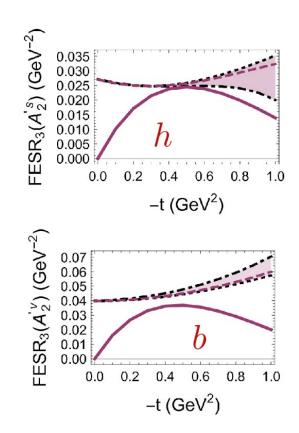
# Matching: unnatural exchanges

$$\left(\pi B_i^{\sigma}(t) \left(\frac{\nu_M}{\Lambda}\right)^k\right) + \left(\int_{\nu_{\pi}}^{\Lambda} \operatorname{Im} A_i^{\sigma}(\nu', t) \left(\frac{\nu'}{\Lambda}\right)^k d\nu'\right) = \left(\beta_i^{\sigma}(t) \frac{\left(\Lambda/\nu_0\right)^{\alpha(t)}}{\alpha(t) + k} \nu_0\right)$$

Nucleon pole

Low-energy model

Regge pole



Look for unnatural contributions in the beam asymmetry

## **Formalism**

$$A_{\lambda';\lambda\lambda_{\gamma}}(s,t) = \overline{u}_{\lambda'}(p') \left( \sum_{k=1}^{4} A_k(s,t) M_k \right) u_{\lambda}(p)$$

$$M_k \equiv M_k(s, t, \lambda_\gamma)$$

$$M_1 = \frac{1}{2} \gamma_5 \gamma_\mu \gamma_\nu F^{\mu\nu} \,,$$

$$M_2 = 2\gamma_5 q_\mu P_\nu F^{\mu\nu} \,,$$

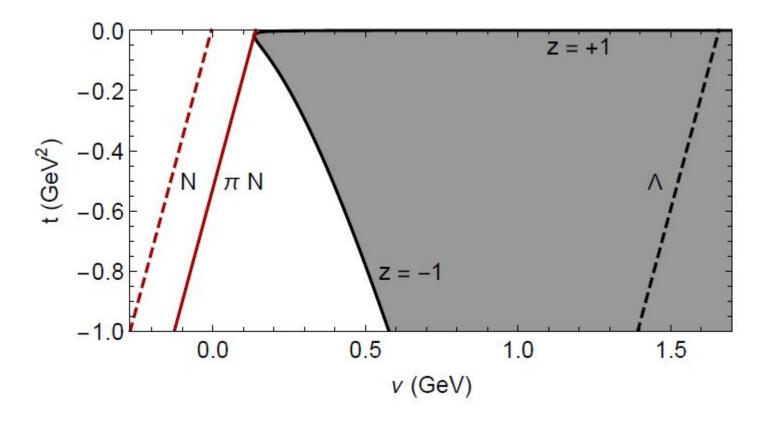
$$M_3 = \gamma_5 \gamma_\mu q_\nu F^{\mu\nu} \,,$$

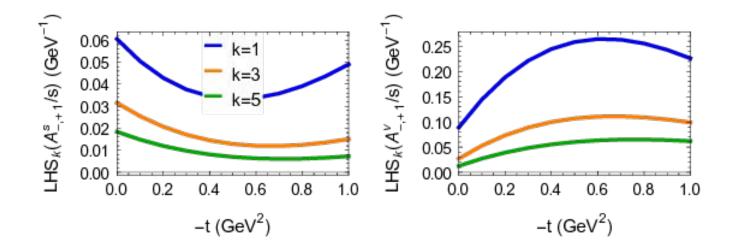
$$M_4 = \frac{i}{2} \epsilon_{\alpha\beta\mu\nu} \gamma^{\alpha} q^{\beta} F^{\mu\nu} .$$

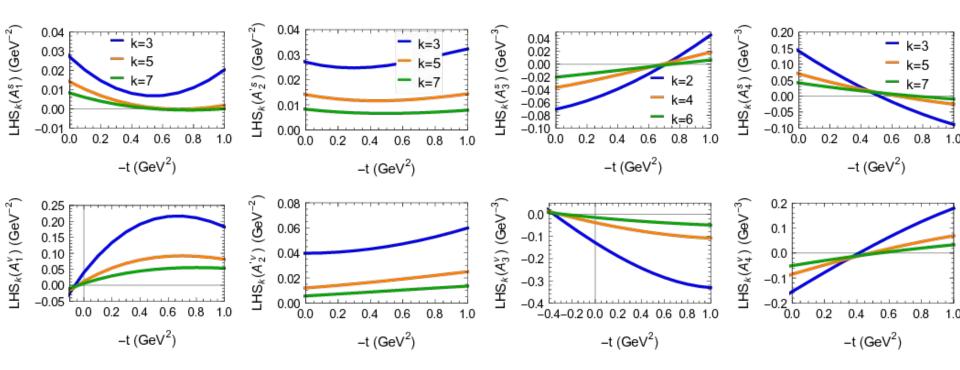
- No kinematic singularities
- No kinematic zeros
- Discontinuities:
  - Unitarity cut
  - Nucleon pole

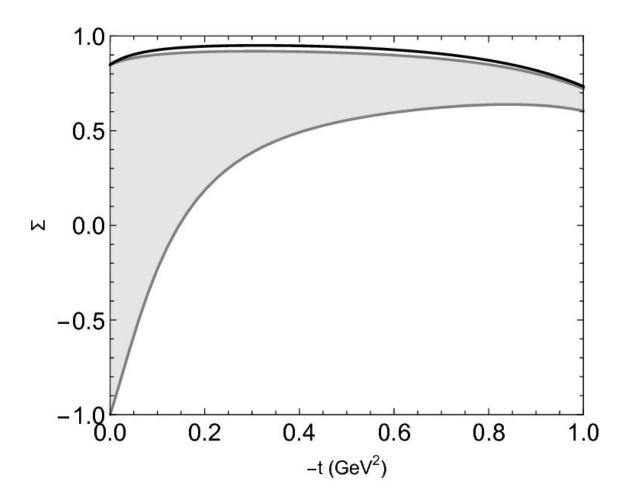
$$\alpha_{1,4}^{(\sigma)} \equiv \alpha_N(t) = 0.9(t - m_\rho^2) + 1$$

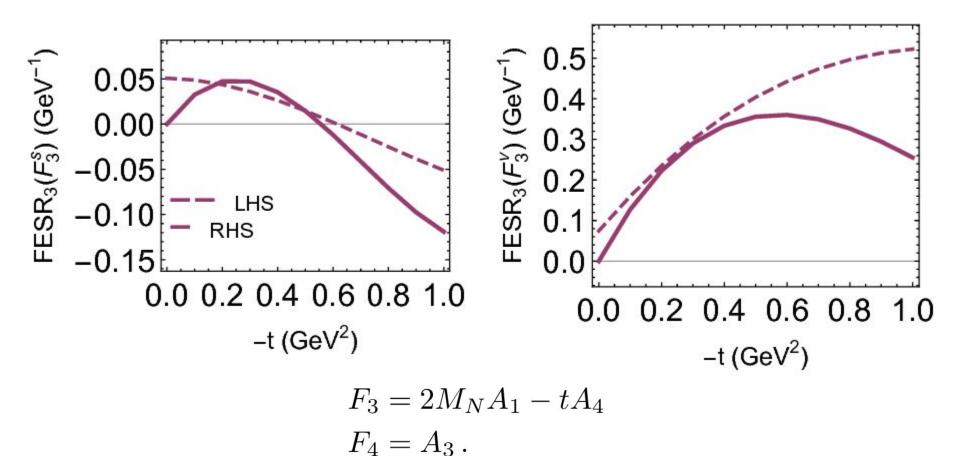
$$\alpha_{2,3}^{(\sigma)} \equiv \alpha_U(t) = 0.7(t - m_\pi^2) + 0$$

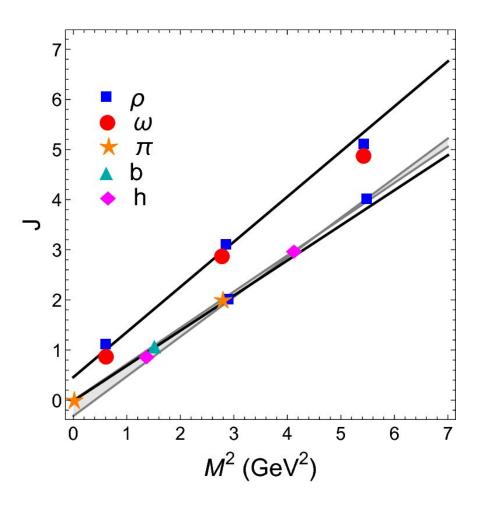












$$\frac{1}{\sqrt{2}s} \left( A_{+,+1} + A_{-,-1} \right) = \sqrt{-t} A_4 \tag{19}$$

$$\frac{1}{\sqrt{2}s} \left( A_{+,-1} - A_{-,+1} \right) = A_1 \tag{20}$$

$$\frac{1}{\sqrt{2}s} \left( A_{+,+1} - A_{-,-1} \right) = \sqrt{-t} A_3 \tag{21}$$

$$\frac{1}{\sqrt{2}s}\left(A_{+,-1} + A_{-,+1}\right) = -A_2' = -(A_1 + tA_2) \quad (22)$$

Thus, at high energies the invariants  $A_3$  and  $A_4$  ( $A_1$  and  $A'_2$ ) correspond to the s-channel nucleon-helicity non-flip (flip), respectively. Combining Eqs. (20) and (22) we obtain

$$A_{-,+1} = -\frac{s}{\sqrt{2}} \left( A_2' + A_1 \right) . \tag{23}$$

$$A_{\mu_f,\mu_i\,\mu_\gamma} \underset{t\to 0}{\sim} (-t)^{n/2},$$
 (17)

where  $n = |(\mu_{\gamma} - \mu_i) - (-\mu_f)| \ge 0$  is the net s-channel helicity flip. This is a weaker condition than the one imposed by angular-momentum conservation on factorizable Regge amplitudes,

$$A_{\mu_f,\mu_i\,\mu_\gamma} \underset{t\to 0}{\sim} (-t)^{(n+x)/2},$$
 (18)

where  $n + x = |\mu_{\gamma}| + |\mu_i - \mu_f| \ge 1$ . We summarize the