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Hadron structure in QCD 

q What do we need to know for the structure? 

²  In theory: hP, S|O( , , Aµ)|P, Si – Hadronic matrix elements 

with all possible operators: O( , , Aµ)

²  In fact: None of  these matrix elements is a direct physical  
observable in QCD – color confinement! 

²  In practice: Accessible hadron structure  
= hadron matrix elements of  quarks and gluons, which  

1)  can be related to physical cross sections of  hadrons 
and leptons with controllable approximation; and/or 

2)  can be calculated in lattice QCD 

q Single-parton structure “seen” by a short-distance probe: 

bT

kT
xp

²  5D structure: 
Z

d2bT1) 
f(x, kT , µ) 2D confined motion! – TMDs: 

2) 
F (x, bT , µ)

Z
d2kT – GPDs: 2D spatial imaging! 

3) 
Z

d2kT d
2bT f(x, µ) – PDFs: Number density! 
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q Multi-parton correlations: 

Quantum interference 3-parton matrix element – not a probability! 

�(Q,~s) / + + + · · ·

2

p,~s k

 t ⇠ 1/Q
– Expansion   



DIS
totσ : ⊗

1 O
QR
⎛ ⎞

+ ⎜ ⎟
⎝ ⎠

Hard probe and QCD factorization 

q  One hadron: e p 

Hard-part 
Probe 

Parton-distribution 
Structure 

Power corrections 
Approximation 

Predictive power:   
       Universal Parton Distributions 

q  Two hadrons: 
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Global QCD analyses – a successful story 

q World data with “Q” > 2 GeV 
    + Factorization: 
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+ DGLAP  Evolution: 

DIS: 

H-H: 

Universal PDFs 
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q  The “BIG” question(s) 

Why these PDFs behave as what have been extracted from the fits? 

What have been tested is the evolution from μ1 to μ2 
But, does not explain why they have the shape to start with! 

Can QCD calculate and predict the shape of  PDFs at the input scale, 
and other parton correlation functions? 

Universal PDFs 



Lattice QCD 

q Hadron masses: Predictions with limited inputs 

Cannot calculate PDFs, TMDs, …, directly, whose operators  
are time-dependent 

q  Lattice “time” is Euclidean: ⌧ = i t

Input 



Operator definition of  PDFs 

q Definition – from QCD factorization: 

PDFs are not direct physical observables, but, well defined in QCD 
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² Depends on the choice of  the gauge link: 

U(0, ⇠) = e�ig
R ⇠
0 dsµAµ

q  Transverse momentum dependent PDFs (TMDs): 
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PDFs from lattice QCD 

q Moments of  PDFs – matrix elements of  local operators 

hxn(µ2)iq ⌘
Z 1

0
dx x

n
q(x, µ2)

q Works, but, hard and limited moments: 

hx3iqhx2iq

Dolgov et al., hep-lat/0201021                        Gockeler et al.,  hep-ph/0410187	


Limited moments – hard to get the full x-dependent distributions! 



PDFs from lattice QCD 

q How to get x-dependent PDFs with a limited moments? 

Cannot distinguish valence quark contribution from sea quarks 

²  Assume a smooth functional form with some parameters 
²  Fix the parameters with the lattice calculated moments 

xq(x) = a x

b(1� x)c(1 + ✏

p
x+ � x)

W. Dermold et al., Eur.Phys.J.direct C3  
(2001) 1-15	




From quasi-PDFs to PDFs (Ji’s idea) 

Ji, arXiv:1305.1539	

q  “Quasi” quark distribution (spin-averaged): 
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q Proposed matching: 

•  Size of  O(1/Pz
2) terms, non-perturbative subtraction of  power divergence 

•  Mixing with lower dimension operators cannot be treated perturbatively, … 

q  Features: 

•  Quark fields separated along the z-direction – not boost invariant! 

•  Perturbatively UV power divergent:                      with             - renormalizable?       
 
•  Quasi-PDFs could be calculated using standard lattice method 

•  Quasi-PDFs  è  Normal PDFs   when Pz è∞ ? 
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Lattice calculation of  quasi-PDFs 
Lin et al., arXiv:1402.1462	


q Exploratory study: 

Quasi-Quark Distribution 
with different Pz 

Predicted quark distribution 
along with global fitted one 

Matching – taking into account: 

Target mass:  (MN/Pz)2  
High twist:       a+b/Pz

2 



Our observation 

q Renormalization scale dependence does not obey DGLAP: 

µ
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, Pz) 6= DGLAP

q Extract hadron structure beyond quasi-DPFs? 
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q Quasi-PDFs are NOT defined by “twist-2” operators:  

They have power UV divergence!   Twist = Dimension - Spin 

q Questions to ask: 

²  Is the operators defining quasi-PDFs renormalizable – continuum limit? 

² Does the renormalization mix with other operators? within a close set? 

² Does renormalized quasi-PDFs and PDFs share the same CO properties? 

²  Reliability to extract PDFs from the renormalized quasi-PDFs? 

²  Lattice calculation:  nonperturbative renormalization? 

² …? 



Our observation 

q  Facts: 

q Our idea: 

²  PDFs are time-independent, so as the factorized cross sections!  

²  The operators, defining PDFs, located on the light-cone is a 
consequence of  the approximation defining the twist-2 factorization 

More precisely, the collinear approximation 

² NOT try to calculate PDFs directly from lattice QCD calculations 

²  Identify a set of  time-independent (fixed or integrated over time) 
and good  single hadron matrix elements: 

§  Calculable in lattice QCD 
§  Factorizable to PDFs with calculable coefficients 
            with controllable approximations 

Call these matrix elements as “lattice cross sections (LCS)” 

² Derive PDFs from Global Analysis of  “data” on lattice cross sections 

Just like what we do now to extract PDFs from experimental data 



Our proposal 

q  Lattice cross sections – definition: 

²  is calculable in lattice QCD with an Euclidean time  

�n(⇠
2,!, P 2) = hP |T{On(⇠)}|P i ! = P · ⇠

Oj1j2(⇠) ⌘ ⇠dj1+dj2�2 Z�1
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Z�1
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j1(⇠) j2(0)

where the operator is defined as 

Ma and Qiu, 2014, 2017 

dj : Dimension of the current

with 

Zj : Renormalization constant of the current

q  Lattice cross sections – requirements: 

²  has the same and factorizable logarithmic CO divergences as PDFs 

²  has a well-defined continuum limit as the lattice spacing,               and a ! 0

q  Lattice cross sections – two-current correlations: 

q  Lattice cross sections – quasi-PDFs: 
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Our proposal 

q  Lattice cross sections – definition: 

²  is calculable in lattice QCD with an Euclidean time  
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with 
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q  Lattice cross sections – requirements: 

²  has the same and factorizable logarithmic CO divergences as PDFs 

²  has a well-defined continuum limit as the lattice spacing,               and a ! 0

q  Identify good lattice cross sections: 

�
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– Renormalization  

– Factorization  

Rest of  my talk:     using quasi-PDFs as a case study 



The case study 

q Quasi-quark distribution could be a good LCS:   

²  Feynman diagram representation: 

q̃(x̃, µ̃
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²  Like PDFs, it is IR finite 

²  Like PDFs, it is UV divergent, but, worse (linear UV divergence) 

Potential trouble!  - need to show that it is multiplicative renormalizable? 

²  Like PDFs, it is CO divergent – factorizes CO divergence into PDFs 

Show to all orders in perturbation theory? 

Sufficiently large 



Renormalization 

q Different from PDFs: 

²  PDFs – moments – twist-2 operators: 

 (⇠�)�+�n(⇠
�, 0) (0) =

X

m

(i⇠�)m

m!
Oµ1...µm(0)nµ1 ...nµm

Twist-2 operators 

Renormalization of  PDFs Renormalization of  twist-2 operators 

Moments of  PDFs Matrix-elements of  twist-2 operators 

² Quasi-PDFs – NO moments – NOT by twist-2 operators: 

Mixing of  all twist-2 operators 

⇠z0
e�ipz⇠z

In                     , NO gauge link! A · nz = 0

Renormalization of  QCD in                      gauge A · nz = 0

NO guarantee for quasi-PDFs renormalization 

² Most challenge part of  quasi-PDFs renormalization: 

Renormalization of  the bi-local/composite operators! 

q Conclusion from arXiv:1707.03107: 
No mix with other  
flavors or gluon! 

Ishikawa, et al. arXiv:1707.03107 



Renormalization 

q Coordinate-space definition: 

q Why the proof  is hard: 

q Broken Lorentz symmetry: 
Both 3D and 4D loop-integration can generate UV divergences 



Renormalization 

q Quasi-quark at one-loop:   
1

2
�zn2

z = �1

q  Fig. 1(a):   
² Cutoff  “a” between fields 
² Conclusion independent of  

regulator 
²  3D-integration:  d4l = d3 l̄ dlz

1st term vanishes for  r1 6= r2



Renormalization 

q Quasi-quark at one-loop:   
1

2
�zn2

z = �1

q Complete one-loop contribution: 

²  At one-loop, all 3D integrations are finite 
² Divergence only come from the region when all momentum  
     components go to infinity 

Localized UV divergence in all directions! 

Very different from the UV behavior of  normal PDFs: (1,λ2,λ), λè∞ 



Renormalization 

q Power counting and divergent sub-diagrams:   
Ishikawa, Ma, Qiu,  
Yoshida (2017)	


(a)  - 1/a, ln(1/a): 

(b)  - ln(1/a): 

(c)  - ln(1/a): 

Happen only when all loop momenta go to infinity – localized! 

q Example of  convergent sub-diagrams:   



Renormalized 

q Power divergence: 
Ishikawa, Ma, Qiu,  
Yoshida (2017)	


  q  Interpretation: 

q  Log divergence in from gauge link: 



Renormalized 

q  Log divergence from gluon-gauge link vertex: 
Ishikawa, Ma, Qiu,  
Yoshida (2017)	


  

q UV from vertex correction: 

q Renormalization to all orders: 



Renormalized 

q With renormalized QCD Lagrangian: 
Ishikawa, Ma, Qiu,  
Yoshida (2017)	


  
q Renormalization:  

q Quasi-quark PDF could be a good “lattice cross sections” 

Multiplicative factor – not mix with other operators 

If  it can be factorized into PDFs 



Factorization 

q Does the renormalized quasi-PDFs and 
PDFs share the same CO properties? 

q Can we extract PDFs from renormalized 
quasi-PDFs reliably? 

⌦

�

+

2p+
�(x� k

+
/p

+)

+ Corrections 



⇠z0 ⇠z

⇠z

⇠z

0

0

0

Factorization of  CO divergence 

Mueller, PRD 1974	


q Generalized ladder decomposition in a physical gauge  

n ·A = A+ = 0

Ma and Qiu, arXiv:1404.6860	


² Only process dependence: 

q                     2PI kernels C0, K0 :

²  2PI are finite in a physical gauge for fixed k and p: 

Ellis, Georgi, Machacek, Politzer, Ross, 1978, 1979	


⇠z ⇠z0 0



Factorization of  CO divergence 

q  2PI kernels – Diagrams: 

q Renormalized kernel - UV & IR safe - parton PDF: 

K ⌘
Z

d

4
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✓
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+
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Tr
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� · n
2p · n K0

� · p
2
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Logarithmic

q Ordering in virtuality: P 2 ⌧ k2 . µ̃2

Cut-vertex for normal quark distribution 
Logarithmic UV and CO divergence 

+ power suppressed 

– Leading power in  
1

µ̃



Factorization of  CO divergence 

q Projection operator for CO divergence:  

bPK Pick up the logarithmic CO divergence of   K 

q  Factorization of  CO divergence:  

CO divergence free All CO divergence of   
quasi-quark distribution 

Normal Quark 
distribution 

s

f̃q/P

If  multiplicative 
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2
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2) Power  
corrections +



One-loop example:  quark èquark 

q Expand the factorization formula:   
Ma and Qiu, arXiv:1404.6860	


q  Feynman diagrams:   

Same diagrams for both 
 
                  and 
 
But, in different gauge: 

f̃q/q fq/q

nz ·A = 0 for

˜fq/q n ·A = 0 for fq/q

q Gluon propagator in nz . A = 0:   
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One-loop “quasi-quark” distribution in a quark 

q Real + virtual contribution:   

q Cancelation of  CO divergence:   

Only the first term is CO divergent for  0 < y < 1, which is the same 
as the divergence of  the normal quark distribution – necessary!  

Ma and Qiu, arXiv:1404.6860	


⇥

where 

Here, a UV cutoff  is used – other scheme is discussed in the paper 

q UV renormalization:   

Different treatment for the upper limit of           integration  - “scheme” l2?



One-loop coefficient functions 
Ma and Qiu, arXiv:1404.6860	


q MS scheme for                  :  fq/q(x, µ
2)

where 

Explicit verification of  the CO factorization at one-loop   

q Generalized “+” description:   
For a testing function 

h(t)

t = x̃/x

Note:                                      as ⇤t ! O
✓

eµ
PZ

◆
PZ ! 1 the linear power UV divergence! 

CO, UV IR finite! 



Go beyond quasi-PDFs 

q Recall:  good lattice cross sections – time independent! 

²  Lattice calculable:  

Calculable using lattice QCD with an Euclidean time 

² UV Renormalizable: 

Ensure a well-defined continuum limit, UV & IR finite! 

Factorizable to PDFs with IR-safe hard coefficients 

² CO Factorizable: 

Share the same perturbative collinear divergences with PDFs 

with controllable power corrections 

P and ξ define the “collision” kinematics – 1/ξ~μ defines the hard scale 

to ensure the necessary condition for the factorization 

�n(⇠
2,!, P 2) = hP |T{On(⇠)}|P i ! = P · ⇠

Oj1j2(⇠) ⌘ ⇠dj1+dj2�2 Z�1
j1

Z�1
j2

j1(⇠) j2(0)

With renormalized and/or conserved currents – No power divergence! 



Summary and outlook 

q  “lattice cross sections” = single hadron matrix elements  
       calculable in Lattice QCD, renormalizable + factorizable in QCD 

q  Lattice QCD can be used to study hadron structure, but,  
     more works are needed!  

q  Extract PDFs by global analysis of  data on “Lattice x-sections”.  
Same should work for other distributions (TMDs, GPDs)  

Going beyond the quasi-PDFs 

q  Conservation of  difficulties – complementarity: 
         High energy scattering experiments  

      – less sensitive to large x parton distribution/correlation 
    “Lattice factorizable cross sections” 
      – more suited for large x PDFs, but limited to large x for now 

Thank you! 

q  Quasi-PDFs are renormalizable & factorizable 





“Quasi-PDFs” have no parton interpretation 

q Normal PDFs conserve parton momentum:   
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q  “Quasi-PDFs” do not conserve “parton” momentum:   
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Note: “Quasi-PDFs” are not boost invariant 



Renormalization 

q Gluon-to-quark at one-loop:   

q Caution for momentum-space version:   

Finite-term: 


