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Hadron structure in QCD

d What do we need to know for the structure?

with all possible operators: O(1), 1), A*)

< In fact: None of these matrix elements is a direct physical
observable in QCD - color confinement!

< In practice: Accessible hadron structure
= hadron matrix elements of quarks and gluons, which

1) can be related to physical cross sections of hadrons
and leptons with controllable approximation; and/or
2) can be calculated in lattice QCD

d Single-parton structure “seen” by a short-distance probe:

< 5D structure: 1) /d2bT mm) f(x,kr,p) -TMDs: 2D confined motion!

2) / d’kr wmmp F(x,bp,pn)—GPDs: 2D spatial imaging!

3) / Phrd?by wmmy f(z,u) -PDFs: Number density!



Hadron structure in QCD

J What do we need to know for the structure? ﬁ
% Intheory: (P, S|O(¢,, A*)|P, S) - Hadronic matrix elements gﬁ' ‘
with all possible operators: O(1), 1), A*)

< In fact: None of these matrix elements is a direct physical
observable in QCD - color confinement!

< In practice: Accessible hadron structure
= hadron matrix elements of quarks and gluons, which

1) can be related to physical cross sections of hadrons
and leptons with controllable approximation; and/or
2) can be calculated in lattice QCD

 Multi-parton correlations:

o(Q, 5) P NE + + 4 <ﬂ>—Expansion

Quantum interference =) 3-parton matrix element — not a probability!



Hard probe and QCD factorization

d One hadron:

DIS \ & 1
+ O —
atot = ( OR )
Hard-part Parton-distribution | | Power corrections
Probe Structure Approximation

O Two hadrons: l
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-f Predictive power:

Universal Parton Distributions




Global QCD analyses — a successful story

+ Factorization:

DIS:

do

H-H:  ayap2.

+ DGLAP Evolution:
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Global QCD analyses — a successful story

d World data with “Q” > 2 GeV g HI and ZEUS preliminary
+ Factorization: = =iien
L —— HERAPDF20 (prel) NLO Q7 =35 GeV’
0 - exp Jffit uncert.
[: model uncert.

DIS: [2(2B, Q%) =%;Ci(xp/z, 1°/Q°) ® f(x,u?) —

dU d& frf’ IV, \
— E / 04 xg(x0.05)
+ DGLAP Evolution: "[ e /\‘
8f($, ,[LQ) o E / P /(x/x,) 2 f/(x, 2) 10" 10° 1;;'2 1‘1;" 1
Olnpz I M Universal PDFs

d The “BIG” question(s)
Why these PDFs behave as what have been extracted from the fits?

What have been tested is the evolution from ¢, to 1,
But, does not explain why they have the shape to start with!

Can QCD calculate and predict the shape of PDFs at the input scale,
and other parton correlation functions?



Lattice QCD

J Hadron masses: Predictions with limited inputs
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O Lattice “time” is Euclidean: 7 =1t

Cannot calculate PDFs, TMDs, ..., directly, whose operators
are time-dependent



Operator definition of PDFs

d Definition — from QCD factorization:
. ) |

0w Pop) = [ 5 € POV () IP)es g g + UVCT(

(27) ’ T_\ At
< Depends on the choice of the gauge link: ™,
U0 _ —zgfgds“A 5& -
( 75) 6 0 \\\ Z

PDFs are not direct physical observables, but, well defined in QCD
d Transverse momentum dependent PDFs (TMDs):

Wby P = [ S R PFOU0.0(9) Ples o + UVCT()

5
< General gauge link: L _)z
0




PDFs from lattice QCD

 Moments of PDFs — matrix elements of local operators

(" (12))g = / dx e q(z, 1)

d Works, but, hard and limited moments:
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Dolgov et al., hep-lat/0201021 Gockeler et al., hep-ph/0410187

Limited moments — hard to get the full x-dependent distributions!



PDFs from lattice QCD

d How to get x-dependent PDFs with a limited moments?

< Assume a smooth functional form with some parameters
< Fix the parameters with the lattice calculated moments

zq(r) = az’(1 - 2)°(1+ vz + 7 2)

1 ) I\
I | mex=3 GeV

W. Dermold et al., Eur.Phys.J.direct C3
(2001) 1-15

Cannot distinguish valence quark contribution from sea quarks



From quasi-PDFs to PDFs (Ji’s idea)

0 “Quasi” quark distribution (Spin-aver‘aged): Ji, arXiv:1305.1539

de, . B ' €2
§(z, p?, P,) = / LI (P|Y(&.)7: exp {zg /O dnzAzmz)} (0)|P) + UVCT(p?)

47 It
L4 ° éz
O Proposed matching: n S
L dy x U A2 M? z
~ 2 _ =g i 2 =

Size of O(1/P,?) terms, non-perturbative subtraction of power divergence

Mixing with lower dimension operators cannot be treated perturbatively, ...

J Features:

* Quark fields separated along the z-direction — not boost invariant!
 Perturbatively UV power divergent: < (1./P,)" with n > 0 - renormalizable?
* Quasi-PDFs could be calculated using standard lattice method

* Quasi-PDFs = Normal PDFs when P, oo ?



Lattice calculation of quasi-PDFs

Lin et al., arXiv:1402.1462

O Exploratory study:

PzE {1» 2» J} 2H/L
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Quasi-Quark Distribution ‘ Predicted quark distribution
with different P, along with global fitted one

Matching - taking into account:

Target mass: (M,/P,)?
High twist:  a+b/P,?



Our observation

O Quasi-PDFs are NOT defined by “twist-2” operators:

de, . - LT
(o P) = [ e PPl exp{zg | dnzAzmz)}w(mm +UVCT ()

They have power UV divergence! Twist = Dimension - Spin

1 Renormalization scale dependence does not obey DGLAP:

d
2 @ ~ 9
[ e q(x, u*, P,) # DGLAP

1 Questions to ask:
< Is the operators defining quasi-PDFs renormalizable — continuum limit?
< Does the renormalization mix with other operators? within a close set?
<> Does renormalized quasi-PDFs and PDFs share the same CO properties?

< Reliability to extract PDFs from the renormalized quasi-PDFs?

< Lattice calculation: nonperturbative renormalization?
< .2

O Extract hadron structure beyond quasi-DPFs?



Our observation

J Facts:

<> PDFs are time-independent, so as the factorized cross sections!

<> The operators, defining PDFs, located on the light-cone is a
consequence of the approximation defining the twist-2 factorization

More precisely, the collinear approximation
d Our idea:
< NOT try to calculate PDFs directly from lattice QCD calculations

< ldentify a set of time-independent (fixed or integrated over time)
and good single hadron matrix elements:

= Calculable in lattice QCD
= Factorizable to PDFs with calculable coefficients
with controllable approximations

Call these matrix elements as “lattice cross sections (LCS)”

<> Derive PDFs from Global Analysis of “data” on lattice cross sections
Just like what we do now to extract PDFs from experimental data



Our proposal

. . e ege Ma and Qiu, 2014, 2017
 Lattice cross sections — definition:

00 (&%, w, P?) = (PIT{O,(£)}|P) w=P-§
where the operator is defined as

Oj,jo(§) = €t =2 220 72131 (€) 42(0)
with d; : Dimension of the current

Z; : Renormalization constant of the current

1 Lattice cross sections — requirements:
< is calculable in lattice QCD with an Euclidean time

< has a well-defined continuum limit as the lattice spacing, ¢ — 0 and
< has the same and factorizable logarithmic CO divergences as PDFs

1 Lattice cross sections — two-current correlationS'

is(8) = €25 [¥a) (©), Jv(€) = €2y gy - €4 (€
Jvi(§) =2 [y - €] (), jal€) = 53 [—ZFﬁyFﬁy](ﬁ)

] Lattice cross sections - quasn-PDFs.
Og(§) = Z; 1 (€)14() v+ £2(£,0) 1h4(0) B(£,0) = Peio Jo £ACE dA



Our proposal

. . e ege Ma and Qiu, 2014, 2017
 Lattice cross sections — definition:

00 (&%, w, P?) = (PIT{O,(£)}|P) w=P-§
where the operator is defined as

Oj,jo(§) = €t =2 220 72131 (€) 42(0)
with d; : Dimension of the current

Z; : Renormalization constant of the current

1 Lattice cross sections — requirements:

< is calculable in lattice QCD with an Euclidean time
< has a well-defined continuum limit as the lattice spacing, ¢ — 0 and
< has the same and factorizable logarithmic CO divergences as PDFs

d Identify good lattice cross sections:

i z 3 .
o (&2, 1/a, Py) > og(&s, 12, Py) — Renormalization
)
om(Es, i3, Py) < fi(z,p?), - Factorization

Rest of my talk: using quasi-PDFs as a case study



The case study

d Quasi-quark distribution could be a good LCS:
NPT dy. i (" /
i@, P = [ e Pl e { ~ig [yt pu)IP)

7

< Feynman diagram representation: &Y% ({¢,,0}) = B9 ({00, £,1) 85 ({00, 0})
Ve . ke

4 oz — =
2P, (x Pz)

P, ~ “\/s” ~ /T  Sufficiently large

P? ~ 0

<> Like PDFs, it is IR finite

< Like PDFs, itis UV divergent, but, worse (linear UV divergence)

Potential trouble! - need to show that it is multiplicative renormalizable?

< Like PDFs, itis CO divergent - factorizes CO divergence into PDFs
Show to all orders in perturbation theory?



Renormalization

Ishikawa, et al. arXiv:1707.03107

] Different from PDFs:

<> PDFs — moments - twist-2 operators: Twist-2 operators ,
T L
PETT R, 0)p(0) =)

P ,
m' (’)Ml Hm (0)7?,/“ ...nu i
m

Moments of PDFs <€—> Matrix-elements of twist-2 operators

m

Renormalization of PDFs <«— Renormalization of twist-2 operators
Mixing of all twist-2 operators
< Quasi-PDFs — NO moments — NOT by twist-2 operators:
In A.n, =0, NO gauge link! 0

Renormalization of QCD in A - n, = 0 gauge

e_ingz

$

NO guarantee for quasi-PDFs renormalization

< Most challenge part of quasi-PDFs renormalization:
Renormalization of the bi-local/composite operators!

(J Conclusion from arXiv:1707.03107:
No mix with other

=R 2 _Cil€| =1 rp—1 b 2
Fil (&, 1% p2) = e 120 20 ) (62, 2, p2) flavors or gluon!



Renormalization

O Coordinate-space definition:

hd 'il,lsl — . 'y
Eyp(&ai®,ps) = o P, (E:) 5 O ({62, 03) ¥ (0)[h(p))

d Why the proof is hard:
* Because of z-direction dependence, Lorentz symmetry is
broken, hard to exhaust all possible UV divergences
* Renormalization of composite operator is needed

O Broken Lorentz symmetry:
Both 3D and 4D loop-integration can generate UV divergences

0 n 1S

0

A Y A \1’ Y L 14l l
=14 1nk

[
1) A p
(c) p P

‘ (a)
UV: 4-D integration UV: 3-D integration

/ i 1 & / d*l
(27)2 12(p — 1)2 2R




Renormalization

1 Quasi-quark at one-loop:

2
A B Y nz _1 lfyz
k S| ki k k| | *
& i}) L e
\ 1 / A ! Y
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Renormalization

1 Quasi-quark at one-loop:

2 _
A Ty nz'___% 17%

A Y

L L
Y // Y A Y LY
» [
r l A 1 A

p P p pt  |p P p
(b) (c) (d)

1 Complete one-loop contribution:
MO T Mg +2 x Myp+2 x =Mie + My

2
ne . . 1
=09 F <_|£~|+21n |£,,_,| __)-
T a a e

< At one-loop, all 3D integrations are finite
< Divergence only come from the region when all momentum
components go to infinity

m) Localized UV divergence in all directions!

Very different from the UV behavior of normal PDFs: (1,12, 1), A =



Renormalization

lshikgwa, Ma, Qiu,
d Power counting and divergent sub-diagrams: Yoshida (2017)

(a) -1/a, In(1/a): Uzr‘r: I
W W

(b) -In(1/a): ‘;g _ T" o +%+
(b)

(c) - In(1/a): I B
-

A

(c)
Happen only when all loop momenta go to infinity — localized!

0 Example of convergent sub-diagrams:

0 I3

0 F Ly




Renormalized

lshikgwa, Ma, Qiu,
4 Power divergence: Yoshida (2017)

Y Iy 7,
0 rooo0 ! rooo0 ! >y
+ :.=+ :.:.:+ oy

l+c/ dry + ¢ /dn/ dro + - -
Jo ' '

—P( (“fU dr’ — ()cr
. |tis allowed to introduce an overall factor e <%zl to remove all

power UV divergences

d Interpretation:

 Mass renormalization of test particle Dotsenko, Vergeles, NPB (1980)

d Log divergence in from gauge link:
- Besides power divergence, there are also logarithmic UV

divergences
« Itis known that these divergences can be removed by a “wave

function” renormalization of the test particle, ZV‘W}



Renormalized

Ishikawa, Ma, Qiu,

Jd Log divergence from gluon-gauge link vertex: Yoshida (2017)

0r

>1 « Logarithmic UV: can be absorbed by the coupling
constant renormalization of QCD.

d UV from vertex correction:

« The most dangerous UV diagram, may mix with other operators
* Locality of UV divergence: no dependenceonr, —r; orp

« UV divergence is proportional to quark-gaugelink vertex at
lowest order, with a constant coefficient

* A constant counter termis able to remove this UV divergence.
1 Renormalization to all orders:

* Using bookkeeping forests subtraction method, the net effectis
to introduce a constant multiplicative renormalizaton factor
Z;qlfor the quark-gaugelink vertex.



Renormalized

Ishikawa, Ma, Qiu,

d With renormalized QCD Lagrangian: Yoshida (2017)

 All UV divergences (too all orders) can be removed by the

following renormalization

F’/P(€ 'MQ’pz) = ¢ ¢ IZ lZ ~1175/])<‘£w :UJzapz)'

1 Renormalization:
Multiplicative factor — not mix with other operators

« Significantly different from normal PDFs

O Quasi-quark PDF could be a good “lattice cross sections”

If it can be factorized into PDFs



Factorization

U Does the renormalized quasi-PDFs and
PDFs share the same CO properties?

J Can we extract PDFs from renormalized
quasi-PDFs reliably?

+

T St ot
2p+5(x kT /pT)

—|— Corrections



Factorization of CO divergence

Ma and Qiu, arXiv:1404.6860
1 Generalized ladder decomposition in a physical gauge

n-A=AT =0 0’* +§z Mueller, PRD 1974
of & o
O+ + £z Co A Y
= Co + 4 T Ko +
ot s Ko 1 I
5 [x

Q Cy, Kp 2Pl kernels I
of & 0 ¢

<> Only process dependence: Co _ éjﬁ>
R

< 2PI are finite in a physical gauge for tixed k and p:

Ellis, Georgi, Machacek, Politzer, Ross, 1978, 1979



Factorization of CO divergence

d 2PI kernels - Diagrams:

P
+2H{:‘m - Rl

d Ordering in virtuality: P? « k2 <32 - Leading power in i
k+ +k K
k+ +k c,
k : k = \\‘// T2 d
i [ K n of - k;n + power su resse
- NG e o p_n) P PP

Ko
p+ +p + * Cut-vertex for normal quark distribution
P Logarithmic UV and CO divergence

d Renormalized kernel - UV & IR safe - parton PDF:

ot . .
K = /d4]‘€z 0 (sz — ]9—+) Ir [%9 7:;/ KO %] T UVCTLogarithmic




Factorization of CO divergence

O Projection operator for CO divergence:

PK Pick up the logarithmic CO divergence of K

O Factorization of CO divergence:

-~ _ . 'l . < . ° °
fq/p=lim_ COZO K' 4+ UVCTS If multiplicative
[ m—1 . N ~ N
= lim Co|l+ Z;K’(I—P)K] + fopPK
= lim Co 1+Z[(1—13)K] ] + fap PK
L i=1 ren
3 1 1
) fp = |Co _ [ _ ] Normal Quark
1-(1-P)K | _ L1-PK distribution
CO divergence free All CO divergence of

quasi-quark distribution

1 ~
~ dx T
) fin(Z, 0%, P.) & E /o - Cz‘j(;,uszz)fj/h(x,ﬁ) —|— Power

, corrections
J



One-loop example: quark =>quark

Ma and Qiu, arXiv:1404.6860
O Expand the factorization formula:

~

dx :c
CTSOEDS / Ci (2, 7%, P2) £ (1)

To order oy:
)@ = f;?;() ;/;(:E/mf“’() c;‘}z,(r/m>

‘ (1) ~ ~

d Feynman diagrams:
|- LK k k k 4 Yk
Same diagrams for both frwswse|  + 51 Y Yo+ % \ Y
fq/q and fq/q PA [ "p p l p p p
But, in different gauge: n,-A=0 for fq/q n-A=0 for fy/,

4 Gluon propagatorinn,. A=0:

o [“nf +n2lP  n2lelP

z

d*P(l) = —g




One-loop “quasi-quark” distribution in a quark

Ma and Qiu, arXiv:1404.6860
1 Real + virtual contribution:

(1) - -2 a, (4me 7 a2 /+°° dl, o 1( o 1-e 2)
P)=C = y)—o(1-2)d-|1-y+ y
ffI/q( ) = Fo I'(1—e¢) Jo l2+2€ o P, ] Y 2

% y 1—y N (1 —y)A\2 N A2 L L= (1—y)X
\//\2+y \//\2 1 —y 23;/2\//\2'*'@/ Qy\/)\2+(1—y)2 2 [/\2+(1_y)2]3/2
where y =1,/P,, \? =12/P% Cr = (N? —1)/(2N.)

 Cancelation of CO divergence:

VA2 412 -yl +Sen(l _/}\/x\‘-’ (1-y)* =1 -y
\/,\+l ¢\- (1-y)> VA2 92 | VAT 4 (1-y)?

Only the first term is CO divergent for 0 <y <1, which is the same
as the divergence of the normal quark distribution — necessary!

=20 <y<1)- [Sgn(y)

d UV renormalization:

Different treatment for the upper limit of li integration - “scheme”

Here, a UV cutoff is used - other scheme is discussed in the paper



One-loop coefficient functions

Ma and Qiu, arXiv:1404.6860

Q MS scheme for f,/,(z, 1?):

. 1 1 CO, UV IR finite!
Cora(t: A%, 1% Pr) = fol (6, /%, P.) = fo)u (b, 1)
¢ ) 2 =2

) S _ [1+t in +1_t] g | e A Sen(®A
Cre 1—t p Lo la=n2 "1t " A+t

1+ ¢ Ay Ai_;
e [Sgn(t)ln (l-l-m)-i—Sgn(l—t)ln (1+2|1_t|)HN

where A; = +/i?/P2+1t2—|t|, Sgn(t) = 1if t > 0, and —1 otherwise,

 Generalized “+” description: t=2%/z

/+oo y [g(t)] Nh(t) _ /+oo dt g(8) [(t) — h(1)] Fora tes;:?tg; function

—00 —00

Explicit verification of the CO factorization at one-loop

Note: A — O (Pi) as P, - oo the linear power UV divergence!
A



Go beyond quasi-PDFs

 Recall: good lattice cross sections — time independent!
on (&%, w, P?) = (P|T{O(£)}| P) w=P-¢{
Oj,jo(§) = &t =2 70 7151 (€) 52(0)
With renormalized and/or conserved currents — No power divergence!
< Lattice calculable:

Calculable using lattice QCD with an Euclidean time

<> UV Renormalizable:

Ensure a well-defined continuum limit, UV & IR finite!

<> CO Factorizable:
Share the same perturbative collinear divergences with PDFs
Factorizable to PDFs with IR-safe hard coefficients
with controllable power corrections

P and & define the “collision” kinematics — 1/ £ ~ ¢ defines the hard scale

to ensure the necessary condition for the factorization



Summary and outlook

O “lattice cross sections” = single hadron matrix elements
calculable in Lattice QCD, renormalizable + factorizable in QCD

Going beyond the quasi-PDFs

O Extract PDFs by global analysis of data on “Lattice x-sections”.
Same should work for other distributions (TMDs, GPDs)

Flat(z P)NZ/ _fz/ha:,u)(,’( 1,/,L2,Pz)

O Conservation of difficulties — complementarity:
High energy scattering experiments
— less sensitive to large x parton distribution/correlation
“Lattice factorizable cross sections”
— more suited for large x PDFs, but limited to large x for now

J Quasi-PDFs are renormalizable & factorizable

O Lattice QCD can be used to study hadron structure, but,
more works are needed!

Thank you!



BACKUP SLIDES



“Quasi-PDFs” have no parton interpretation

 Normal PDFs conserve parton momentum:

M = Z[/ do x f,(z +/01dxqu(x)]+/old:cxfg(x)
—Z/ dr xf,(x —/ooda:a:fg( ) _—

1 Energy-momentum
++
= 2P (P|T™7(0)|P) = constant tensor

d “Quasi-PDFs” do not conserve “parton” momentum:
M = Z U dz 2 f, (%) + / d’Zc:zfq(aé)] +/ dz i f, (%)
0 0
—Z/ da & f, (% —/ dx & f,(Z)

= 5z (PIIT™(0) = ()] P) # constans

Note: “Quasi-PDFs” are not boost invariant




Renormalization

d Gluon-to-quark at one-loop:
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« UVdivergence from 3-D « §'(£,), vanishes for finite &,

 Caution for momentum-space version:
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 Divergentas ¢, - 0
 Resultin bad large x behavior in momentum space



