

(Un)Balancing the Linacs Michael Tiefenback Ops Staytreat 2017-08-02

Accelerator Operations Department

Reliability? Uptime improvement?... Really?

- Well, when you think about it, maybe....
- $E_{nl} = E_{sl}$: Design choice, not a law of nature
- What if one linac is better than the other?
- "Smoke 'em if you got 'em"
 - Sidestepping arbitrary limitations
 - Plan around and expand hardware limits
 - Think ahead to avoid constraints

Unbalanced Linacs...

- What is affected?
 - Momentum ratios for Spreaders/Recombiners
 - Relative polarization to users on different passes
- High passes asymptotically approach design ratios
- Largest problems with largest vertical dispersions
 - First and second pass vertical S/R
- What limits exist?
 - Shunt capacity
 - Recirculation arc magnet set points

Aug 2017 Ops StayTreat

What relates to today? In practical terms:

• Reliability – It works when you ask

When something breaks, make the rest of it work.

• Availability – It works often enough

When greater capacity is available in a linac, use it.

• Performance – It works well enough

But More is better. (Sorry... couldn't resist)

Aug 2017 Ops StayTreat

M. Tiefenback

Unbalanced linac energy gain

- Set the Injector and Arc energies
- Configure the Linacs for the desired energy gain
- Configure the Arcs for the proper beam momenta
- Deliver beam to the halls

But first...

- Momentum ratios in S/R regions have little margin
- Common dipoles are off-ratio at the few-% level
- Correctors control trajectories in dispersive regions
- Shunt/Corrector powering and beamline aperture limit off-nominal S/R ratios

Estimates of limiting effects

- Dispersion in 1S/2S regions: ~1.4 meters
 - First common dipole must be matched to beam momentum to within ~1/2% (shunts important)
- Arcs dipole bus set to actual beam energy
 - +/- horizontal corrector margin
- "2nd common dipoles" in 3S/4S regions contribute to high pass beam offsets
- Dispersion for high arcs is of lesser magnitude, so principal limits are 1S/3S and 2S/4S bore margin

Aug 2017 Ops StayTreat

Mitigations

Standard measures:

- Return bore in 1S/2S telescopes to 6GeV sizes
- Increase shunt or "shunt-adder" margin

Non-standard measures:

- Use multipass steering mechanism to create cm-scale separation of beams at ends of linacs
 - Retrofit elliptical S/R diff. pump apertures?
- Supplement 1st step S/R magnets to limit bore use

Aug 2017 Ops StayTreat

What would we be preparing for?

Unbalanced linac configuration was initially pursued to allow use of upgraded accelerating capacity even when asymetrically installed, removing an artificial limit. It opens options:

- Maximizing total beam energy after loss of gradient
- Utilizing asymmetric gradient capacity, whether upgraded, or "found" (as we learn better to use it)
- Maximizing users' experimental reach via polarization
 - Alters the "magic energy" table

What tools should we make?

- LEM link between linacs for baseline configuration
 - Full minimization of trip rate across two linacs
 - Set Arc and Injector energies run-by-run
 - During a run, use LEM as now no new "setups"
- Configuration tools for S/R optimization
 - Assess magnet powering network limitations
 - Determine where magnet supplement is wise

Need some verification time, too, principally up to 3-pass

