

Electrons for Neutrinos: Addressing Critical Neutrino-Nucleus Issue

Proposal PR12-17-006

Spokespersons:

O. Hen (MIT), K. Mahn (MSU), E. Piasetzky (TAU), S. Stepanyan (JLab) and L.B. Weinstein (ODU).

Jefferson Lab PAC-45, July 11th, 2017

Long Baseline Oscillations

Neutrino Oscillations

Neutrino Oscillations

KamLAND, PRL 100, 221803 (2008)

(Long Baseline) Oscillation Challenge

Oscillations are basically ratios of reconstructed ν energy spectra:

- Energy (x-axis): Reconstructed from the measured final state.
- Flux (y-axis): Reconstructed using reaction model (crosssection + FSI + ...)
- => Incorrect neutrino-nucleus interaction modeling can bias the extracted oscillation parameters

(Long Baseline) Oscillation Challenge

Oscillations are basically ratios of reconstructed ν energy spectra:

- Energy (x-axis): Reconstructed from the measured final state.
- Flux (y-axis): Reconstructed using reaction model (crosssection + FSI + ...)
- => Incorrect neutrino-nucleus interaction modeling can bias the extracted oscillation parameters

Attacking the Monster From All Sides

Attacking the Monster From All Sides

(1) Monochromatic e-beam constrains:

- Vector currents
- Nuclear FSI
- •

(2) ν 'near-detector' data constrains:

- Axial / Vector-Axial currents
- Ultra-low Q²

(3) Must reproduce e-data and ν 'near-detector' data before reliably used to extract oscillation parameters.

- General situation lots of data, usually not in the relevant phase-space for neutrino experiments:
- W-boson mass makes the neutrino 'Mott' cross-section flat. In contrast to the forward peaked electron case.
- <u>A(e,e')</u>: measured extensively; well described using various scaling approaches.
- <u>A(e,e'p)</u>: measured primarily in selective kinematics (around the QE peak). Usually reported as ratio to theory.
- <u>A(e,e'n), A(e,e'NN)</u>: Sparse data, especially at GeV energies.
- Resonance production: lacking systematic data on nuclei and at large multiplicities.

- General situation lots of data, usually not in the relevant phase-space for neutrino experiments:
- W-boson mass makes the neutrino 'Mott' cross-section flat. In contrast to the forward peaked electron case.
- <u>A(e,e')</u>: measured extensively; well described using various scaling approaches.
- <u>A(e,e'p)</u>: measured primarily in selective kinematics (around the QE peak). Usually reported as ratio to theory.
- <u>A(e,e'n), A(e,e'NN)</u>: Sparse data, especially at GeV energies.
- Resonance production: lacking systematic data on nuclei and at large multiplicities.

- General situation lots of data, usually not in the relevant phase-space for neutrino experiments:
- W-boson mass makes the neutrino 'Mott' cross-section flat. In contrast to the forward peaked electron case.
- <u>A(e,e')</u>: measured extensively; well described using various scaling approaches.
- <u>A(e,e'p)</u>: measured primarily in selective kinematics (around the QE peak). Usually reported as ratio to theory.
- <u>A(e,e'n), A(e,e'NN)</u>: Sparse data, especially at GeV energies.
- Resonance production: lacking systematic data on nuclei and at large multiplicities.

- General situation lots of data, usually not in the relevant phase-space for neutrino experiments:
- W-boson mass makes the neutrino 'Mott' cross-section flat. In contrast to the forward peaked electron case.
- <u>A(e,e')</u>: measured extensively; well described using various scaling approaches.
- <u>A(e,e'p)</u>: measured primarily in selective kinematics (around the QE peak). Usually reported as ratio to theory.
- <u>A(e,e'n), A(e,e'NN)</u>: Sparse data, especially at GeV energies.
- Resonance production: lacking systematic data on nuclei and at large multiplicities.

- General situation lots of data, usually not in the relevant phase-space for neutrino experiments:
- W-boson mass makes the neutrino 'Mott' cross-section flat. In contrast to the forward peaked electron case.
- <u>A(e,e')</u>: measured extensively; well described using various scaling approaches.
- <u>A(e,e'p)</u>: measured primarily in selective kinematics (around the QE peak). Usually reported as ratio to theory.
- <u>A(e,e'n), A(e,e'NN)</u>: Sparse data, especially at GeV energies.
- Resonance production: lacking systematic data on nuclei and at large multiplicities.

JLab Data-Mining

Utilizing existing CLAS data to extract physics from different parts of the phase-space not considered in the original proposal.

CLAS6 Spectrometer

- 1 5 GeV electron beam,
- (almost) 4π acceptance,
- Charged particles (8°-143°): Toroidal field + tracking, TOF, Cerenkov, and EM Calorimeter,
- Neutral particles: EM Calorimeter (8°-75°) and TOF (8°-143°).
- Low detection threshold (~300MeV/c),
- OPEN TRIGGER !

Mining For Neutrinos

<u>Goal:</u> Use CLAS data to study E_{beam} reconstruction and vector-current cross-sections for different energies / nuclei.

Means (for QE study):

- Select clean (e,e'p) events (no pions, 2nd protons, ...),
- Reweight by *e-N* / ν -*N* cross-section ratio.
- Analyze as 'neutrino data' (assume unknown beam energy),
- Study beam energy reconstruction methods,
- Compare to GENIE predictions,
- Identify regions in phase-space where energy reconstruction and GENIE predictions agree well.

Existing CLAS6 Data

Targat	2.2 GeV		4.4 GeV	
Target	(e,e')	(e,e'p)	(e,e')	(e,e'p)
³ He	24.5	9.3	4.1	1.5
⁴ He	46.3	17.3	8.0	2.8
¹² C	30.0	11.0	4.8	1.5
⁵⁶ Fe	1.4	0.5	0.4	0.1
* #Trigge	rs x 10 ^{all}	ot!		

+ EG2 (~ x10 less stat): 5 GeV on d, ¹²C, ²⁷Al, ⁵⁶Fe, ²⁰⁸Pb (Q² > 1.5)

Existing CLAS6 Data

Terret	2.2 GeV		4.4 GeV		
Target	(e,e')	(e,e'p)	(e,e')	(e,e'p)	
³ He	24.5	9.3	4.1	1.5	0.035
⁴ He	46.3	17.3	8.0	2.8	0.03
¹² C	30.0	11.0	4.8	1.5	^{0.025} ¹² C 4.4 GeV w
⁵⁶ Fe	1.4	0.5	0.4	0.1	0.02 12C 4.4 GeV
* #Trigge	rs x 10 ^{all}	ot!			0.015 ¹² C 2.2 GeV w
\Rightarrow	Very lin / heavy	nited m v nuclei v	edium data.		0.01 ¹² C 2.2 GeV
\Rightarrow I	Imited	l low-Q ²	reacn.		$0 1 2 3 4 Q^2$

+ EG2 (~ x10 less stat): 5 GeV on d, ¹²C, ²⁷Al, ⁵⁶Fe, ²⁰⁸Pb (Q² > 1.5)

Final state detection approaches

Cherenkov detectors:

- Electrons & Pions
- No protons / neutrons

Tracking detectors:

All charged particles + π
 [Progress towards neutrons]

Final state detection approaches

Cherenkov detectors:

- Electrons & Pions
- No protons / neutrons
- $\Rightarrow \mathbf{E}_{\nu} \operatorname{Reconstruction} \operatorname{from} \\ \operatorname{lepton} \operatorname{kinematics.} \\$

Tracking detectors:

- All charged particles + π
 [Progress towards neutrons]
- $\Rightarrow E_{\nu}$ Reconstruction from 'full' final state.

$$E_{\nu} = E_l + E_p^{kin} + E_b$$

$$E_{\nu} = \frac{2(M - \varepsilon_n)E_1 + M^2 - (M - \varepsilon)^2 - m_l^2}{2(M - \varepsilon - E_1 + |k_1|\cos(\theta))}$$

Energy Reconstruction Example

 $P_T^{miss} = P_T^{lepton} + P_T^{Proton}$

Data-Generator Comparisons

New Proposal: Systematic study!

<u>Targets:</u> ⁴He, ¹²C, ¹⁶O, ⁴⁰Ar, ¹²⁰Sn <u>Beam Energies:</u> 1.1, 2.2, 4.4, 6.6, 8.8 GeV

New Proposal: Systematic study!

Targets:

⁴He, ¹²C, ¹⁶O, <u>⁴⁰Ar</u>, ¹²⁰Sn

Beam Energies:

1.1, 2.2, 4.4, 6.6, 8.8 GeV

CLAS12 Spectrometer:

- Luminosity: x10 higher than CLAS6 !
- Charged Particles: 5° 120°
- Neutrons: 5° 120° + 160° 170°
- Threshold: ~300 MeV/c

=> High stat. semi-inclusive and exclusive data sets on multiple targets at multiple energies.

Unique hadronic models test!

CLAS12: Neutrons + Lower Q²! Lower Q² coverage!

10

Example I: Neutron Multiplicity (0 – x2)

Preliminary MINERvA neutron multiplicity

Number of neutrons

Example III: FSI Effects

M. Betancourt et al. (MINERvA Collaboration), arXiv: 1705.03791 (2017)

Example III: FSI Effects

M. Betancourt et al. (MINERvA Collaboration), arXiv: 1705.03791 (2017)

Example IV: E_v & Q² Reconstruction

 Q_{p}^{2} [GeV²]

Q² [GeV²] High Q² events 2 reconstructed as low Q²_p due to nuclear effects 1.5 Q² [GeV²] 2 0.5 1.5 $P_{\tau} < 0.2 \text{ GeV/c}$ 1.5 0.5 CLAS6 Data, $P_{\tau} > 0.4 \text{ GeV/c}$ 2.2 GeV Incoming beam. 1.5 2 0.5 1 ¹²C(e,e'p) no pion events. Q_{p}^{2} [GeV²]

Example IV: $E_v \& Q^2$ Reconstruction

MicroBooNE Preliminary (MIT-TAU Analysis)

Electrons 4 Neutrinos

Energy [GeV]	н	⁴He	¹² C	¹⁶ O	⁴⁰ Ar	¹²⁰ Sn	Total	
1	0.2	0.5	0.5	0.5	0.5	0.5	2.5	4 days out-bending
2.2	0.2	1	1	1	1	1	5	
4.4	0.2	1	1	1	1	1	5 <	[added low-Q ² running @ 4.4,6.6 and 8.8 GeV]
6.6	0.2	2	2	Х	2	2	8	
8.8	0.2	4	4	Х	4	4	16	1 day in-bending
Total (days)	1	8.5	8.5	2.5	8.5	8.5	37.5	

Electrons 4 Neutrinos

• High impact study of bias in neutrino oscillation analyses:

- Incident energy reconstruction,
- Final State Interactions,
- Resonance production,
- Multinucleon effects.
- The 'Vector Currents' partner of the short-baseline (neardetector) neutrino program.

• Impact on high-luminosity accelerators R&D (RadCon interest to improve Geant4, Fluka etc.).

"benchmarking of the simulation packages such as Geant4 and FLUKA ... is a longstanding important problem for the radiological evaluations at JLab and other high energy electron facilities" (RadCon)

Electrons 4 Neutrinos Team

Mariana Khachatryan (ODU@JLab)

Afroditi Papadopoulou (MIT@FNAL) Adi Ashkenazi (MIT@FNAL)

L.B. Weinstein (ODU), E. Piasetzky, E. Cohen (TAU)
O. Hen, A. Schmidt, A. Silva (MIT), S. Dytman (Pittsburgh), K. Mahn (MSU), M. Betancourt (FNAL)

Overwhelming Support

GiBUU

MINERvA

Giessen Boltzmann-Uehling-Uhlenbeck Project

