Parton Distribution Functions from Parity Violation (PVPDF)

Mark Dalton, Cynthia Keppel and Kent Paschke for the PVPDF collaboration

Argonne National Laboratory, College of William and Mary, Duquesne University, Florida International University, Idaho State University, Longwood University, Mississippi State University, North Carolina A&T State, Ohio University, Stony Brook University, Syracuse University, Thomas Jefferson National Accelerator Facility, University of Colorado, University of Connecticut, University of Manitoba, University of Virginia, University of Zagreb, Virginia Tech, Virginia Union University

Introduction

We request 38 days of beam for commissioning and data taking.

Hall C standard spectrometers

Measure the parity violating asymmetry in Deep Inelastic Scattering (DIS), $(F_2^{\gamma Z,p}$ structure function) from which new information on the strange quark PDF will be extracted.

Parity Violation PDF Experiment

Strange quark PDF is essentially completely unknown.

Mark Dalton

Jefferson Lab

JLab PAC45 - July 2017

Importance of Strange Quark PDF

- Fundamental component of nucleon structure
- essentially unknown—is the sea SU(3) symmetric?
- the few measurements available conflict, or are subject to unknown corrections
 - nuclear corrections for neutrino targets
 - fragmentation functions

 What is the origin of the non-perturbative sea? non-zero d

 - u
 cannot be generated perturbatively from gluon radiation chiral symmetry breaking? hadronic fluctuations (pion, kaon cloud)? Knowledge of the strange distributions is a vital component of understanding the effect.

The impulse approximaectron-positron pair annihiadron H plus anything else: " in the deep-inelastic -pair mass squared q^2 and r transfer ν . In an infinitehe detected hadron, this bed as the creation of an n-antiparton pair and its final states.

her processes which satisfy aints allowing application imation we need look for lergies s which absorb or

can

FIG. 1. one of the case it is partons or

Parity Violation PDF Experiment

PDF Global Analysis

PDF: probability densities of quarks and gluons with longitudinal momentum fraction x relative to their parent hadron momentum

- Experimental data (~ 4k data points)
- QCD factorization: PDF (same for PPDF, FF)
- Global analysis

global analyses differ in: input data, parameterization, 1 treatment of heavy quarks, value of α_s , experimental (x, Q^2) errors treatment, theoretical error estimation.

Fits have been done for 3 decades but the strange remains poorly determined

Data to isolate strange still elusive

Both the magnitude and the shape of the strange pdf are essentially unknown.

JLab PAC45 - July 2017

Strange PDF

Various extractions differ by more than and order of magnitude Many fits not focusing on strange contribution

Results depend on parameterizations and assumptions in global fit.

Accessing Strange Quarks

 di-muon production in neutrino-nucleus scattering 	0.01 < x < 0.2
 W and Z rapidity distributions 	x >~ 0.00 I
 W+c production 	x ~ 0.01
 Semi-inclusive K production: not included in global fits (fragmentation) 	0.02 < x < 0.6
 Parity Violating electron scattering 	0.1 < x < 0.5

It's still not clear whether the strange sea is as big as the up and down sea $(k \sim I)$ or half as big $(k \sim 0.5)$

 $k = \frac{2s}{(\bar{u} + \bar{d})}$

Neutrino nucleus

- initial state nuclear modifications of the PDFs themselves (partly under control—nuclear PDF fits)
- final state interactions
 - medium-induced gluon bremsstrahlung;
 - final state suppression of charm production (measured at RHIC significantly larger than perturbative calculations for QGP)
- Using these data tends to give $\mathbf{k} \approx \mathbf{0.5}$

Proton—proton at high energy

ATLAS fits get $\mathbf{k} \approx \mathbf{I}$ using collider only data

Similar results from $pp \rightarrow (W + c) + X$ JHEP05(2014)068

Data at high Q², strange mainly comes from gluon radiation Evolution works most effectively from low Q² to high Q²

Jefferson Lab

Semi-inclusive K production

HERMES and COMPASS data on kaon multiplicities from SIDIS

- Depend on 2 non-perturbative inputs:
 - strange PDF
 - kaon fragmentation functions
- Do not agree in shape or magnitude
 - problem with factorization assumption?

Kaon fragmentation functions

Parity Violating Deep Inelastic Scattering (DIS)

small

$$A_{PV} = \frac{G_F Q^2}{4\sqrt{2}\pi\alpha_{\rm em}} \left[a_2(x) + \frac{1 - (1 - y)^2}{1 + (1 - y)^2} a_3(x) \right]$$

Dominates

$$a_{2}(x) = -2 g_{A}^{e} \frac{F_{2}^{\gamma Z}(x)}{F_{2}^{\gamma}(x)} = \frac{2 \sum_{q} e_{q} g_{V}^{q} q^{+}(x)}{\sum_{q} e_{q}^{2} q^{+}(x)}$$

$$a_{3}(x) = -2 g_{V}^{e} \frac{F_{3}^{\gamma Z}(x)}{F_{2}^{\gamma}(x)} = -4 g_{V}^{e} \frac{\sum_{q} e_{q} g_{A}^{q} q^{-}(x)}{\sum_{q} e_{q}^{2} q^{+}(x)}$$

$$egin{aligned} g_V^u &= rac{1}{2} - rac{4}{3} \sin^2 heta_W \ g_V^d &= -rac{1}{2} + rac{2}{3} \sin^2 heta_W \ g_A^e &= -rac{1}{2} \ g_V^e &= -rac{1}{2} + 2 \sin^2 heta_W \ g_A^u &= -g_A^d = rac{1}{2} \ q^+(x) &= q(x) + ar q(x) \ q^-(x) &= q(x) - ar q(x) \end{aligned}$$

Mark Dalton

Parity Violation PDF Experiment

JLab PAC45 - July 2017

Isolating strange

Parity-violating DIS allows strange contribution to be isolated, when combined with E.M. p and n DIS data at low/intermediate x

★ at leading order
$$F_{2}^{\gamma p} = \frac{4}{9}x(u+\bar{u}) + \frac{1}{9}x(d+\bar{d}+s+\bar{s}) + \cdots$$

$$F_{2}^{\gamma n} = \frac{4}{9}x(d+\bar{d}) + \frac{1}{9}x(u+\bar{u}+s+\bar{s}) + \cdots$$

$$F_{2}^{\gamma Z,p} = \left(\frac{1}{3} - \frac{8}{9}\sin^{2}\theta_{W}\right)x(u+\bar{u}) + \left(\frac{1}{6} - \frac{2}{9}\sin^{2}\theta_{W}\right)(d+\bar{d}+s+\bar{s}) + \cdots$$

$$\approx \frac{1}{9}x(u+\bar{u}+d+\bar{d}+s+\bar{s}) + \cdots \quad \text{for } \sin^{2}\theta_{W} \approx 1/4$$

3 equations with 3 unknowns

$$s + \bar{s} \approx 3(5F_2^{\gamma Zp} - F_2^{\gamma p} - F_2^{\gamma n})$$

 $F_2^{\gamma Z,p}$ is 5 times more sensitive to strange

Predicted asymmetry

Large spread in central values

Data in single bin to indicate overall statistical precision.

Large quoted theoretical uncertainties

Data in multiple bins to indicate ability to measure shape.

Jefferson Lab

Parity Violation PDF Experiment

Impact on s-PDF

Total precision on the s-PDF with uncertainty only from A_{PV} (assuming all other components of the structure function are known)

Proposed data will significantly help establish the strange PDF magnitude and x shape.

Experimental Overview

- Beam: 70 uA, maximum energy, minimized transverse polarization.
- 20 cm, "standard" liquidhydrogen target (as used in GMP)
- Helicity flip rate 240 Hz
- Parity level beam control
- Qweak-level polarimetry
- Full tracking for calibration
- Counting mode asymmetry measurement (same as PVDIS in Hall A)
- Asymmetry measurement using lead glass calorimeters and Heavy Gas Cherenkov detectors.

High rate DAQ—basic idea already pioneered modern technology will make it easier

Spectrometer Kinematics

	$P_{\rm cent}$	$\theta_{\rm cent}$	$\langle Q^2 \rangle$	$\langle x \rangle$	$\langle W \rangle$	$\langle A_{\rm PV} \rangle$
Spectrometer	(GeV/c)	(deg)	$(\text{GeV}^2/\text{c}^2)$		(GeV)	(ppm)
HMS	6.4	10.5	2.31	0.275	2.66	185
SHMS	6.5	8.5	1.53	0.209	2.64	122

Push to low x keeping $Q^2 > I GeV^2$

Rate Breakdown

Parity Violation PDF Experiment

JLab PAC45 - July 2017

Segmentation of SHMS calorimeter

 $\langle W
angle$ calorimeter Y (cm) $\overline{\mathbf{O}}$ calorimeter Y (cm) 3.2 (W) (GeV) 2.38 2.09 1.84 1.58 1.34 1.18 $\langle \mathsf{Q}^2
angle$ (GeV 2 1.92 2.00 2.06 2.12 2.18 2.21 50 50 2.4 <mark>2.06</mark> 2.14 2.21 2.27 2.33 2.33 **2.39 2.13 1.83 1.54 1.28 1.14** 3 2.20 2.28 2.36 2.45 2.48 .42 2.18 1.82 1.44 1.21 2.2 2.39 2.50 2.58 2.60 2.22 1.83 1.36 1.12 2.8 -2 2.44 2.64 2.69 2.32 1.69 1.40 2.6 1.44 1.63 **2.00** 2.78 2.74 2.78 2.90 -1.8 Ω 2.95 2.87 2.80 2.82 2.90 1.36 1.73 1.97 1.95 2.4 -1.6 3.06 3.00 2.93 2.88 2.88 2.92 **1.19 1.36 1.67 1.89 1.95** 2.98 2.95 2.94 2.98 2.99 1.13 1.21 1.39 1.61 1.79 1.87 1.93 3.03 2.2 1.4 **1.14 1.24** 1.40 1.57 1.72 1.82 1.87 1.88 3.07 3.04 3.01 3.00 3.01 3.03 3.08 2 1.2 3.08 1.75 1.83 1.88 3.09 3.07 3.05 3.06 3.06 1.27 1.40 1.53 1.66 1.16 -50 -50 1.51 1.62 1.73 1.79 1.85 1.10 3.20 3.17 3.14 3.12 3.11 3.09 3.07 3.09 3.09 **1.17 1.28 1.39** 20 -20 40 -20 20 40 -40 0 -40 Ω calorimeter X (cm) calorimeter X (cm) calorimeter Y (cm) 🗙 rate 0.5 $\widehat{\mathbf{x}}$ calorimeter Y (cm) 35 rate (kHz) 0.46 0.40 0.35 0.30 0.26 0.23 3.54 6.58 9.47 14.06 20.03 5.63 50 50 3.29 9.92 15.81 26.21 24.24 0.69 0.41 0.37 0.31 0.26 0.22 0.20 0.45 30 9.28 19.55 31.57 13.61 0.38 0.34 0.28 0.22 0.19 0.4 0.32 0.26 0.19 0.16 2.58 25.61 36.19 1.89 25 0.02 31.30 29.28 0.31 0.22 0.18 -0.35 20 0.15 0.17 0.20 0.23 0.56 30.11 21.69 0.25 -0.3 0 <mark>0.13 0.16</mark> 0.20 0.22 0.21 <mark>4.57 23.80</mark> 14.52 2.36 0.03 15 0.12 0.13 0.15 0.18 0.20 0.20 -0.25 0.82 7.91 14.13 10.00 4.16 0.97 8.04 8.64 7.05 4.45 1.96 0.36 10 0.12 0.13 0.15 0.17 0.19 0.19 0.19 0.2 6.53 5.57 3.49 2.31 1.07 0.18 1 64 0.13 0.14 0.16 0.18 5 0.15 0.13 0.14 0.15 0.16 0.17 0.18 0.18 4.00 3.76 2.90 1.75 1.21 0.51 -50 -50 1.51 2.30 2.49 2.23 1.94 1.46 1.10 0.81 0.35 0.11 0.12 0.14 0.15 0.16 0.17 0.17 0.18 -20 20 40 -20 20 40 -40 0 -40 0 calorimeter X (cm) calorimeter X (cm) Mark Dalton Parity Violation PDF Experiment Jefferson Lab JLab PAC45 - July 2017

Kinematics determined from position on calorimeter

Data Acquisition

High rate PID and counting, basic principles already pioneered in PVDIS experiment, more modern technology will make it easier.

- Assume 50 ns recovery time for Cherenkov, I MHz => 5 % pile up
- The existing readout system in Hall C is fully-pipeline capable
- VXS Trigger Processor (VTP) is the heart of the DAQ
 - 4 MB fast memory
 - run algorithms to detect pulses, determine geometrical center in the calorimeter, determine PID from Cherenkov and calorimeter
 - 2 histograms ~1 MB each—one filled while the other is read out
 - 16 bit depth (65536 counts) to be 26 bins in 4 dimensions
 - Maximum 240 MB/s rate to to tape
 - Custom firmware produced by JLab Fast Electronics group
- **Dead time monitored** by injecting pulses
- Dedicated data runs reading out **full waveforms**
- Beam current scans, threshold scans and charge asymmetry scans—to study nonlinearities in dead-time and other rate-dependent effects
- Measure dead time to $5\% \Rightarrow \sim 0.25\%$ uncertainty

DAQ is the most novel item

Tracking and Q^2

Largest systematic

Assuming level of uncertainty achieved during 6 GeV era

Small angle, large sensitivity to angle

Beam energy	0.1~%
Scattered momentum	0.1~%
Scattering angle (0.5 mrad)	0.71~%
Q^2 determination	0.72~%

• extensive survey

water target
 I pass beam

Parity Violation PDF Experiment

JLab PAC45 - July 2017

Polarimetry

Second largest systematic

Same strategy as Qweak: combined Moller and Compton measurements.

Revive high-precision techniques before the run.

Compton asymmetry significantly larger at higher energy. Existing electron detector will capture half of the spectrum. Largest source of uncertainty can be reduced with new firmware. Compton 0.59% Phys. Rev. X6 no. 1, (2016) 011013

Moller simulations predict 0.74% uncertainty at 11 GeV. Measurements every 3 days, ~4 hours.

Aluminum Background

5 Mil thick windows < 3% of rate Asymmetry up to 20% larger than hydrogen

Mark Dalton

Parity Violation PDF Experiment

Systematic Uncertainties

Q^2 determination	0.72~%
Polarization measurement	0.60~%
Residual transverse beam polarization	0.40~%
Dead-time corrections	0.25~%
Elastic radiative tail	0.22~%
Pair-symmetric background	0.20~%
Aluminum endcaps	0.20~%
Beam asymmetries	0.10~%
Pion contamination	0.08~%
Total	1.12~%

Beam Time Request

	days	8 hour shifts
Optics and tracking		6
Moller measurements		5
Aluminum target		3
Compton commissioning		3
Pileup monitoring		2.5
Vertical polarization		1
Spectrometer re-scattering		1
Reverse polarity		1
Polarization setup		1
Target fluctuation studies		0.5
Total commissioning and systematics	8	24
Total production	30	
Total	38	

Jefferson Lab

Summary

- Parity violation experiment using the standard equipment in Hall C
 - gives precision measurement of
 - First model independent constraint on strange PDF in valence regime
- can only be done at CEBAF with small angle spectrometers
 - allow access down to $x \sim 0.1$ where strange quark PDF rises rapidly
 - not covered by any non-nuclear data

The Parity Violation Parton Distribution Function (PVPDF) Experiment: a new experimental constraint on PDFs Proposal to JLab PAC 45

Whitney Armstrong¹, Seamus Riordan¹, David Armstrong², Todd Averett², Wouter Deconinck², Fatiha Benmokhtar³, Pete Markowitz⁴, Dustin McNulty⁵, Tim Holmstrom⁵, Jim Dunne⁶, Dipangkar Dutta⁶, Latif Kabir⁶, Samuel Danagoulian⁷, Paul King⁸, Julie Roche⁸, Abhay Deshpande⁹, Krishna Kumar⁹, Paul Souder¹⁰, Silviu Covrig¹¹, Mark Dalton^{*} (contact)¹¹, Cynthia Keppel (co-spokesperson)¹¹, David Gaskell¹¹, David Mack¹¹, Robert Michaels¹¹, Eric Pooser¹¹, Brad Sawatzky¹¹, Edward Kinney¹², Nobuo Sato¹³, Michael Gericke¹⁴, Kent Paschke (co-spokesperson)¹⁵, Darko Androic¹⁶, Mark Pitt¹⁷, and Narbe Kalantarians¹⁸

¹Argonne National Laboratory, Argonne, IL 60439, USA
²College of William and Mary, Williamsburg, VA 23187, USA
³Duquesne University, Pittsburgh, PA 15282, USA
⁴Florida International University, Miami, FL 33199, USA
⁵Idaho State University, Pocatello, ID 83209, USA
⁵Longwood University, Farmville, VA 23909, USA
⁶Mississippi State University, Mississippi State, MS 39762, USA
⁷North Carolina A&T State, Greensboro, NC 27411, USA
⁸Ohio University, Athens, OH 45701, USA
⁹Stony Brook University, Stony Brook, NY 11794, USA
¹⁰Syracuse University, Syracuse, NY 13244, USA
¹¹Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA
¹²University of Colorado, Boulder, CO 80309, USA
¹³University of Connecticut, Storrs, CT 06269, USA

¹⁴University of Manitoba, Winnipeg, MB R3T 2N2, Canada ¹⁵University of Virginia, Charlottesville, VA 22901, USA

Jefferson Lab

Factorization

hard, calculable part

different processes probe different parts of the distributions

Target density fluctuations

Adds additional noise	Experiment	$I_{\rm beam}$	Raster	Reversal	Width
	G0	40 uA	2x2 mm	30 Hz	238 ppm
Compare to statistical	PVDIS	100 uA	4x4 mm	30 Hz	$569 \mathrm{~ppm}$
width—this	HAPPEX 3	100 uA		30 Hz	$1000 \mathrm{~ppm}$
experiment large	GMP	60 uA	$2\mathrm{x}2~\mathrm{mm}$	$30~\mathrm{Hz}$	$536 \mathrm{~ppm}$

We will use a GMP-style target mitigated by increasing flip rate and raster size

Mark Dalton

Jefferson Lab

$$\left(\frac{4\mathrm{mm}^2}{16\mathrm{mm}^2}\right) \left(\frac{70\mu A}{60\mu A}\right)^3 \left(\frac{20\mathrm{cm}}{15\mathrm{cm}}\right)^3 536 \mathrm{~ppm} = 504 \mathrm{~ppm}.$$

Electron	Reversal	Statistical	Assumed	Relative
rate	rate	width	target width	width increase
800 kHz	$30~{ m Hz}$	4330 ppm	1000 ppm	2.6~%
800 kHz	$240~\mathrm{Hz}$	12250 ppm	$1000 \mathrm{~ppm}$	0.3~%
$800 \mathrm{~kHz}$	$240~\mathrm{Hz}$	$12250 \mathrm{~ppm}$	$504 \mathrm{~ppm}$	0.08~%

Parity Violation PDF Experiment

29

JLab PAC45 - July 2017

Helicity Correlated Differences

- moderate sensitivity to differences
- feedback on charge in the source
- beam differences off the photocathode minimized in source setup
- helicity magnets in the injector will be used to further diminish the position and angle differences.
- regular IHWP to help cancel the remaining differences
- modulation of the beam position and energy to extract sensitivity

Sensitivity	Difference	Correction
$\partial R/\partial x \sim 22 \text{ ppb/nm}$	< 20 nm	< 440 ppb
$\partial R/\partial \theta \sim 34 \text{ ppb/nrad}$	< 4 nrad	< 136 ppb
$\partial R/\partial E \sim 0.23 \text{ ppb/ppb}$	< 100 ppb	< 23 ppb

All HAPPEX experiments and Qweak exceeded these difference specs.

Assume 20% uncertainty on corrections \Rightarrow 0.1% overall uncertainty

Transverse asymmetry leakage

Left-Right asymmetry

Vertical polarization: 0.0% ± 2.0% (1.15 degrees)

25 ppm*2%=0.5 ppm

Up-Down asymmetry

Horizontal polarization: ± 4.0% (2.3 degrees) acceptance around horizontal: -10% to 10%

Acceptance might map to different kinematics, potential non-cancellation must be studied, assume 10% residual.

25 ppm*4%*10%*10%=0.01 ppm

Spectrometer Backgrounds

Re-scattering within the spectrometer may cause background with unknown asymmetry in the acceptance.

No large asymmetry processes contribute.

Unlike HRS dipoles in Hall A there are no magnetized iron "pole tips" to scatter off.

Bounded using a full simulation the spectrometer and tracking data from early 12 GeV experiments. Specific beam based studies might be necessary.

Parity Violation PDF Experiment

Water Target Resolution

2017/06/30 15.55

Comparison to SOLID kinematics

PVPDF at lower x where the s-PDF fits diverge the most Accessed through small angle capability in Hall C

Jefferson Lab

Segmentation of HMS calorimeter

Kinematics determined from position on calorimeter

Qweak Compton Polarimetry

HMS & SOS calorimeters' construction

Thickness14.6 rad.length			
Effective area	60×120 cm ²		
# of modules	52		
# of channels	78		
Arrangement	4×13		
Block sizes	10×10×70 cm ³		
Radiator	TF-1 lead glass		
Light detector	XP3462B PMT		
In operation	1995 - present		

- HMS and SOS calorimeters have similar design.
- Blocks are arranged in four planes.
- Each block is a lead glass optically isolated with aluminized Mylar and black Tedlar film.
- The total thickness of material along the particle direction is about
- 14.6 rad.length which is enough to absorb the major part of electrons energy.

Mariana Khachatryan

HUGS 2012

Parity Violation PDF Experiment

Design construction of SHMS calorimeter

CALORIMETER:

Number of channels252Effective Area (cm²)116x134Thickness (Rad.L.)21.6

PRESHOWER:

Number of blocks	28
Blocks & PMTs from	SOS
Block size (cm ³)	10x10x70
Lead Glass type	TF-1
Thickness (Rad.L.)	3.6

SHOWER:

Number of blocks	224
Modules from	HERMES
Block size (cm ³)	9x9x50
Lead Glass type	F-101
Thickness (Rad.L.)	18.0

Radiators:

TF-1 Rad.L.(cm)	2.74
F-1 Rad.L.(cm)	2.78
Density (g/cm ³)	3.86
Refractive Index	1.65

Mariana Khachatryan

Jefferson Lab

Mark Dalton

Up and Down quarks

Jefferson Lab