CI2-16-001 PRI2-16-001 update to Jefferson Lab PAC45 July 12 2017

BDX Dark Matter search in a Beam Dump eXperiment an update on PRI2-I6-00I

M.Battaglieri, A.Celentano, M.DeNapoli, R.DeVita, E.Izaguirre, G.Krnjaic, E.Smith and the BDX Collaboration

Summary of BDX proposal (Conditionally approved - C2)
 Beam-on background evaluation using FLUKA
 Beam-on background assessment via onsite measurements

BDX - Dark Matter search in a Beam Dump eXperiment: an update

Searching for (Light) Dark Matter

- Compelling astrophysical indications of DM existence but no prove of particle-behaviour
- An extensive experimental program based on WIMPS paradigm is searching for DM via nuclear recoil (Direct Detection)

 Negative results call for extending the DM hunting territory to unexplored regions

> Dark/Hidden Sector Light Dark Matter couples to SM with a new force

- Light Dark Matter (X) in I-1000 MeV mass range where (traditional) Direct Detection is (almost) impossible
- High intensity beam makes accelerator-based DM search highly competitive

JLab is the world-leading facility for LDM search (HPS, APEX, DARK-LIGHT)

Progress in LDM searches from PAC44

* Growing word-wide (CERN, Mainz, LNF) and US (JLab, Fermilab SLAC, Cornell) interest for LDM searches

 DOE-organized workshop in March 2017 at University of Maryland to identify new small projects for DM searches to complement the already approved program

U.S. Cosmic Visions: New Ideas in Dark Matter

23-25 March 2017 Stamp Student Union, University of Maryland, College Park US/Eastern timezone

"To respond to the 2014 P5 report recommendations in the search for dark matter particles and maintaining a diversity of project scales in our program, DOE Office of High Energy Physics (HEP) is interested in identifying new, small projects for dark matter searches in areas of parameter space (i.e. mass ranges or types of particles) not currently being (or on track to be) explored. HEP is asking for community input in the spring 2017 timeframe in order to plan the program forward. Input is requested on the possibilities for small (the whole project is ~ \$10 million or less) dark matter projects in unexplored parameter space. A community workshop, followed by a White Paper would be a good path to provide the input needed. We encourage you to collect information from the community, including theorists and experimentalists involved in non-accelerator and accelerator-based efforts."

US Cosmic Visions: New Ideas in Dark Matter 2017 : Community Report

Marco Battaglieri (SAC co-chair),¹ Alberto Belioni (Coordinator),² Aaron Chou (WG2 Convener),³ Priscilla Cushman (Coordinator),⁴ Bertrand Echenard (WG3 Convener),⁴ Rouven Essig (WG1 Convener),⁴ Jonathan L. Feng (WG4 Convener),⁴ Brenna Flaugher (Coordinator),³ Patrick Kro (WG4 Convener),⁴ Jonathan L. Feng (WG4 Convener),⁴ Jonathan U. Feng (WG4 Convener),⁴ Jonathan U. Feng (WG4 Convener),⁴ Jonathan U. Feng (WG4 Convener),¹ Brenter Hall (Coordinator),³ Patrick Kro (WG4 Convener),⁴ Jonathan U. Feng (WG4 Convener),¹ Jonathan U. Ferd Hall (Coordinator),¹ Patrick Kro (WG4 Convener),¹ Jonathan U. Ferd Hall (Convener),¹ Jonathan U. Ferd (SAC member),¹¹ Patrick Krose (WG1 Convener),¹² Jonathan U. Ferd (SAC member),¹³ Patrick Row (GAC member),¹³ Patrick (SAC member),¹⁴ Tin M.P. Tait (SAC member),¹⁴ Nalaik Enro (SAC onember),¹⁶ Kathyrn Zurek (SAC member),¹⁴ Tin M.P. Tait (SAC member),¹⁴ Mark Auser,²⁴ Howard Baer,²⁵ Diparwita Banerjee,²⁶ Elisabetta Baracchini,²⁷ Philip Barbeau,²⁸ Joshua Barrow,²⁸ Noemi Bastati,¹⁰ Stephen Bennou 21 Asher Borlin,¹⁰ Mark Hint,²⁴ Thiiri Blinnov,² Kimberly K. Boddy,²⁴ Mariangela Bondi,³⁶ Walter M. Bonivento,²⁸ Mark Boulay,²⁷ James Boyce,³⁵ ²⁸ Maxim Brato,⁴⁰ Stephen Bennou 21 Asher Borlin,¹⁰ Mark Hint,²⁴ Thiiri Blinnov,² Kimberly K. Boddy,³⁴ Mariangela Bondi,³⁶ Walter M. Bonivento,²⁸ Mark Boulay,²⁷ James Boyce,³⁵ ²⁸ Maxim Carize,⁴⁵ Stabato Stefano Caizza,⁴⁵ Stehen Comp,⁴⁰ Mark Hint,²⁴ Thiiri Blinning,⁴⁰ Mark Cale,⁴⁶ Stabato Stefano Caizza,⁴⁵ Stehen Comp,⁴⁰ Mark Hint,²⁴ Thiiri Blinning,⁴⁰ Anarc Calefer Stabato Stefano Caizza,⁴⁵ Stehenserson D'Erano,⁴ James Hore,⁴⁶ Arie Datharo,⁴¹ Jamitin Blinning,⁴⁰ Anarc Calefer Stabato Stefano,⁴¹ Jamitin Blinning,⁴⁰ Calefano Caizza,⁴¹ Stehe

White paper in preparation will be available soon

- The white-paper (signed by more than 200 researchers) will be used to evaluate the opportunity of DOE/NSF funding call for small (scale <\$10M) project in the area to be launched soon (2018/19?)</p>
- * BDX has been included as a project in LDM searches with accelerators program

3

The BDX experiment

Two step process

I) An electron radiates an A' and the A' promptly decays to a χ (DM) pair

II) The χ (in-)elastically scatters on a e⁻/nucleon in the detector producing a visible recoil (GeV)

PhysRevD.88.114015 E.Izaguirre, G.Krnjaic, P.Schuster, N.Toro

Experimental signature in the detector:

X-electron \rightarrow EM shower ~GeV energy

BDX at JLab

- ★ High energy beam available: I I GeV
 ★ The highest available electron beam current: ~65 uA
- * The highest integrated charge: 10²² EOT (41 weeks)
- **\star** BDX detector located downstream of Hall-A beam dump
- * New underground experimental hall

5

The BDX detector

Detecting the X

E.M. Calorimeter A homogeneous crystal-based detector combines all necessary requirements

Rejecting the bg

• Cosmic • Beam-on

Active veto Two layers: of plastic scintillator OV: light guide + PMT IV: WLS + SIPM

Modular EM calorimeter

- 8 modules 10x10 crystals each
- 800 CsI(TI) crystals (from BaBar EMCal)
- 6x6 mm² Hamamatsu SiPM readout
- 50 x 55 x 295 cm³

6

Inner Veto plastic scintillator + WLS + SiPM

> Passive shielding lead vault 5cm thick

> > Outer Veto plastic scintillator + PMTs

BDX - Dark Matter search in a Beam Dump eXperiment: an update

Outer veto plastic scintillators paddle + light guide + PMT

BaBar Crystals

7

Inner veto plastic scintillators paddle + WLS + SiPM

The BDX prototype

Inner veto in the lead vault

• EM Cal

- 4x4 CsI(TI) crystals
- 6x6 mm² SiPM
- Outer Veto Lead vault
- Inner Veto

X production and detection

- Detailed simulations using MadGraph to describe the A' production, decay (A' $\rightarrow \chi \chi$) and interaction in the BDX detector (X-e)
- Detailed description of Hall-A beam dump (production) and BDX detector (detection) using GEANT4

Background

Bg estimated using GEANT4, tracking particles with E>E_{Thr}

Cosmic

- ★ Cosmic background measured with the BDX detector prototype in CT
- ★ GEANT4 simulations reproduce muon rate

Expected cosmic bg counts in BDX lifetime < 2 counts

Beam-related

9

- \star Muons are ranged out by the iron shielding
- ★ Non-negligible contribution of high energy neutrino interacting in the detector by CC: $v + N \rightarrow X + e^{-1}$

Expected beam-related counts in BDX lifetime ~ 10 counts

eelab12

BDX expected reach

Beam time request

- 10²² EOT (65 uA for 285 days)
- BDX can run parasitically to any Hall-A
 E_{beam}>10 GeV experiments (e.g. Moeller)

Beam-related t	background	Cosmic background		
Energy threshold	N _v (285 days)	Energy threshold	√ Bg (285 days)	
300 MeV	~10 counts	300 MeV	<2 counts	

BDX sensitivity is 10-100 times better than existing limits on LDM

<u>elab12</u>

10

Beam-related background

BDX presented in July 2016 to JLab PAC44 receiving a C2 - Conditionally Approval The main concern expressed on BDX experiment in the PAC44 report

From the introduction:

... and the beam dump experiment was "C2" Conditionally Approved because we would like to see them carry out some onsite measurements of the neutron flux when the accelerator is running.

From the report:

While simulations are an essential tool in understanding background conditions, they are not sufficient to design an experiment. The BDX collaboration is therefore encouraged to think more about **benchmarking their simulations with measurements on site**.

Since no direct measurement in the proposed BDX set-up is possible, we are addressing the PAC44 concern in two ways:

* implementing MC simulations with GEANT4 and FLUKA tools (in collaboration with JLab RadCon Group)

- to compare results obtained in the two frameworks
- to simulate an equivalent number of EOT in the range expected in BDX (10²²EOT) using biasing weights
- to better handle low energy particles background (neutrons)

* assessing the beam-related bg measuring the muon flux in the current Hall-A dump configuration

- to validate MC for forward particles production with an absolute normalization point
- to demonstrate [CsI(TI) crystal + SiPM]_{EMCal} & [Plastic scintillator + WLS +SiPM]_{Veto} works in a high low-energy background (neutron)

The proposed tests aim to respond to PAC44 concern and obtain full approval for BDX proposal

M.Battaglieri - INFN GE

Proposed test to measure the beam-on background

Measurement campaign to characterize the flux of high-energy μ produced in the Hall-A beam dump

- Pipe downstream of Hall-A beam-dump at BDX location
- Insert a CsI(TI) crystal surrounded by plastic scintillators
- Same detector technology proposed for BDX detector
- Measure µ flux when 11-GeV beam is on

Downstream of the Hall-A beam dump - TODAY -

Hall-A beam-dump

Proposed BDX new

M.Battaglieri - INFN GE

Expected Results

Expected μ and n energy spectra in location B (d = 25.2m, beam height)

Expected particle flux and energy deposition in the CsI(TI) crystal (FLUKA) in location B

Only muons and neutrons reach the area of interest
Rate from cosmic muons is negligible (and measurable)

<u>e () lab12</u>

15

Expected Results

Expected μ rates in BDX-Hodo

	Location	Rate (Crystal only)	Rate (Crystal + scintillator)
	А	I20 KHz	24 KHz
	$B \Delta \text{Vertical} = 0$	20 KHz	3.7 KHz
Beam • Ι = ΙΟ μΑ • Ε = ΙΟ GeV	(beam height) C	2 KHz	0.5 KHz
Thresholds $Ther = 2 MeV$	off-axes C ∆V=+ 40cm up	I.4 KHz	170 Hz
• Th _{Scint} = 400 keV	$C_{\Delta V=+80 \text{ cm up}}^{\text{ off-axes}}$	0.6 KHz	80 Hz

- Few days tests at 11 GeV, 1uA< I_{beam} < 100uA (fully parasitic to any Hall-A operations)
- Beam current scan (compatible with HAII-A needs) if possible
- Relative and absolute μ rates to be compared to MC simulations
- Test of BDX detector technology (CsI(TI) crystal + SiPM) and DAQ in a low-energy backgroundrich environment to demonstrate the insensitivity to low-energy neutron-induced pile-up
- Pipes available for further/other experimental installations (TAC comment) for bg assessment (e.g. JLab RadCon Group expressed interest in deploying a low-energy neutron detector)

Summary

- * Collecting 10²² EOT in 285 days of parasitic running (~4y-calendar) at 11 GeV the BDX experiment would be 10-100 times more sensitive than previous experiments
- * Implemented two strategies for a more reliable beam-related background estimate:
 - strengthening simulation tools
 - performing a measurement on site when the accelerator is running
- *With the support of JLab RadCon Group, the BDX experimental set-up has been implemented in FLUKA
- * FLUKA confirmed GEANT4 results presented in PRI2-16-001
- * Following PAC44 review indications, we propose to run a ~1 week tests in the actual JLab configuration to assess the beam-on background
- * Test results will be used to validate MC simulations and prove BDX detector technology in a realistic condition
- * This update address the concern expressed by PAC44 aiming to obtain the full approval of PR12-16-001 (now Conditionally Approved C2)

17

The BDX Collaboration

- Organisation of dedicated workshops and satellite meetings at major venues
- R&D funds from INFN and grant requests submitted

18

- Cab12

Back up slides

19

eelab12

CI2-I6-00I TAC report responses

1. Measurement as proposed is assumed to be entirely parasitic. However, it will undoubtedly be necessary to access the BDX detector area(s) for debugging during active run periods. It should be verified if this will be possible during beam delivery and to develop any needed access protocols.

- R
- No radiations are expected in the location where the tests will be located.
 During the well drilling RadCon Group will monitor radiation level of removed dirt

2. How will the (potentially) large data files be transferred from the local DAQ systems to the JLab tape silo, Farm, etc. for archiving and analysis? WiFi (if it's even available in that area) may not be sufficient for online data analysis, or for reliably integrating EPICS and other desired 'slow control' data into the otherwise standalone DAQ.

- No data transfer is required (the expected 5TB will be stored on a portable device) R.
 - EPICS variables will be accessed off-line via MYA DB (~Is time resolution level is good enough to correlate beam parameters to data)
 - In case of need a mobile LTE connection will be activated

3. The proposed generator power may need to be conditioned to meet requirements for low noise DAQ systems. (Test well beforehand.)

- Noise could be an issue to be mitigated R.
 - FACILITY may provide some other power source (as backup solution)

4. Weatherproofing high-voltage and signal cable paths between the temporary van/out-building into the wells may introduce additional cost.

- Detector costs will be fully covered by INFN
 - Detailed plans and costs estimate will be defined and discussed with JLab management once the tests will be endorsed

5. Multiple experimental runs at different periods are strongly encouraged to explore issues of data reproducibility and detector stability that will be critical for the proposed 4 year full measurement.

- Tests are expected to run for a week R.
 - Pipes will remain in place available for future/further measurements

6. The initial proposal suggested using timing cuts against the CEBAF pulse structure. This was not mentioned for this test run. Perhaps it is not wanted for this test? If this or other 'external' signals need to be transmitted to this DAQ, then plans/costs for engineering the necessary cable runs should be outlined.

- All results reported in PR12-16-001 do not consider any timing cuts
- R. • BDX does not require special beam time structure
 - Slow-control information will be correlated off-line

20

BDX - Dark Matter search in a Beam Dump eXperiment: an update

Other LDM scenarios

 \star inelastic Dark Matter assumes off-diagonal interaction predicting the existing of 2 states X₁ X₂ with mass splitting Δm

- ★ If Δm exceeds few MeV the $X_2 \rightarrow X_1 e^+ e^-$ is expected to be the dominant decay
- \star Beam dump experiment show a unique sensitivity to iDM scenarios
- * Boosted decay electrons and positrons produce in the detector high-energy E.M. showers easy to detect

BDX will cover a significant iDM parameter's region testing the DM relic origin target

21

e. 2 lab12

A critical review of upper limits derived from old experiments

EI37@SLAC (<1988)

- SLAC electron beam: 20 GeV 2x10²⁰ EOT
- Detector: 8 r.l. em calorimeter (hodo + converter + MWPC)
- Size: I.5m xI.0 m at ~380m from the BD
- Cosmic bg suppressed by directionality and time coincidence
- Detection Threshold: I-2 GeV
- 0 events detected
- Extracted upper limits suffer by poor knowledge of experimental details
- No e⁻ showering in the BD included: softer DM E spectrum and defocused DM beam
- Limits are overestimated by a factor ~3-4 (depending on the kinematics)

LSND@LosAlamos (1994/98)

- 800 MeV protons to LANSCE beam dump
 From π⁰ → A' γ decay
 - (and A' \rightarrow X X)

Recently recalculated, fund to be overestimated by a factor ~4-5

BDX is the first beam-dump experiment optimised for LDM searches

22

M.Battaglieri - INFN GE

- Cab12

BDX - Dark Matter search in a Beam Dump eXperiment: an update

M.Battaglieri - INFN GE

BDX & future experiments

LDMX@SLAC

Missing momentum experiments maximize sensitivity per luminosity using a challenging technique

- be proved, Phase I (Ie⁻ / 25ns @ 4GeV) will be able to increase x10 BDX sensitivity
- When technical difficulties will be resolved Phase II (Ie⁻ / Ins @ 8GeV) will gain another x40 in sensitivity

... but

MissingMomentum vs BeamDump (disappearance vs appearance)

 p_{in}

... more sensitive in the exclusion plots but less reliable/convincing in case of positive finding!

The two experimental approaches are complementary

- ★BDX will reach the ultimate sensitivity of beam dump experiments hitting the irreducible ∨ bg with a consolidated technology ready-to-go
- ★LDMX presents challenges that if/when overcome will lead the 2nd generation LDM searches experiments

High statistics MC simulations

★ Simulation of full statistics (10²² EOT) not feasible because of computing resources limitation [GEANT4: Iy, 2000 cores→10¹¹-10¹² EOT]

* FLUKA uses a tuned set of biasing weights to efficiently simulate low probability processes

- Leading particle biasing for $e^+ e^-$ and γ
- Region importance biasing for hadrons and muons in the forward direction
- Photon inelastic cross section biased by a factor 10^2 and $\gamma \rightarrow \mu^+ \mu^-$ biased by a factor 10^4
- Accurate treatment of low-energy neutron propagation and neutrino interaction

★ Final bias configuration obtained after running multiple tests to optimize simulation parameters (discussed with JLab Radiation Control Group)

- For each parameters settings, score muons current across concrete and iron shielding
- Use a FOM defined as $\sigma^2 T$ (σ = FLUKA error, T = CPU time) to evaluate effect of parameters change
- ★ Equivalent number of primary particles (ENPP) is the number of primary particles necessary to simulate in a full (unbiased) run to obtain the same statistical error
- ★ Extrapolating results obtained in a run of 2 days on 200 cores show that an equivalent statistics of 10¹⁷⁻¹⁸ EOT is collectable in 6 months

Crystal

- CsI(TI) crystal [5x5 (4x4) x 30 cm³]
- 6x6 mm² SiPM photosensor
- The same set-up of BDX ECal
- MIPs signal: 32 MeV (1670 pe)

Scintillator

- 13 plastic scintillator paddles 1 cm thick
- 3x3 mm² SiPM coupled via WLS fibers
- Same technology used in BDX IV
- MIPs signal: 2 MeV (50 pe)

Container

- Cylindrical vessel (d=20cm, h=52cm)
- Stainless steel, water-tight

Performance

- Trigger provided by CsI(TI) alone
- front: 2H strips
- back: 2V strips + I large paddle
- 9 x 2.5x2.5 cm² XY grid
- 5-fold coincidence (2H + crystal + 2V) to identify muons
- top/bottom/lateral veto's for cosmic
- Geometry, material and response implemented in GEANT4
- Simulated response matched to BDX-Protoype detector running in CT

The BDX-Hodo detector

- 2x 8h shifts (4 calendar days, including 50% CEBAF efficiency) will suffice to complete the test
- BDX Collaboration will be in charge of providing the detector and run tests

27

Test plan and costs estimate

Date

25%

25%

25%

25%

25% 25%

6

6

 $\mathbf{5}$

 $\mathbf{5}$

 $\mathbf{5}$

4.5

Total time

Total time

Configuration change

AMOUNT Sub's O&P Contingency Total

25%

25%

25%

25%

25%

1/27/17

\$25,000

\$6,250

\$1,563

\$1,563

\$1,875

\$3,125

- Two 10" wells ~20-30m downstream o the Hall-A beam-dump, insert pipes and lower the BDX-Hodo detector to measure the muon/bg rate at different depth
- A realistic quote shows drilling costs in the range of \$40k

		_						
\$39,375								schodulo
		279	10/02/17	Monday	2.1	NOTE 17.4		SCHEDUIE
		200	10/03/17	Tuesday	21			
			10/04/17	Wednesday	21	2+ halls	F12.10.102	10 6 / 20 / -
iring		281	10/04/17	Theorem	21	3 halls	F12 10 102	10.6/20/
anng		282	10/05/17	Inursoay	21	5+ Italis	E12-10-103	10.6/20/-
		283	10/06/17	Friday	21	3+ halls	E12-10-103	10.6/20/-
		284	10/07/17	Saturday	2.1	3+ halls	E12-10-103	10.6/20/-
amination		285	10/08/17	Sunday	2.1	3+ halls	E12-10-103	10.6/20/-
		296	10/09/17	Monday	21	3+ halls	E12-10-103	10.6/20/-
			10/10/17	Tuesday	21	3+ halls	F12-10-103	10.6/20/-
		207	10/10/17	Tocaday	21	2 halls	F12 10 102	10.6/20/
		288	10/11/1/	weanesday	21	5+ Halls	H12-10-103	10.6/20/-
		289	10/12/17	Thursday	21	3+ halls	E12-10-103	10.6/20/-
		290	10/13/17	Friday	2.1	3+ halls	E12-10-103	10.6/20/-
		291	10/14/17	Saturday	2.1	3+ halls	E12-10-103	10.6/20/-
		303	10/15/17	Sunday	21	3+ halls	F12-10-103	10.6/20/-
- 9h		252	10/16/17	Manday	21	3+ halls	F12 10 102	10.6/20/-
$n, \sim 3n$	1000	293	10/16/1/	Monday	21	5+ Italis	F12-10-103	10.6/20/-
-	1000	294	10/17/17	Tuesday	21	3+ halls	E12-10-103	10.6/20/-
1 (2 5)		295	10/18/17	Wednesday	2.1	3+ halls	E12-10-103	10.6/20/-
ed (M)	1000	296	10/19/17	Thursday	2.1	3+ halls	E12-10-103	10.6/20/-
()	1000	297	10/20/17	Friday	21	3+ halls	E12-10-103	10.6/20/-
		100	10/21/17	Caburdan	21	3+ halls	F12-10-103	10.6/20/-
		250	10/22/17	sacuroay	21	2 halls	E12-10-100	10.0/20/-
	100	299	10/22/17	Sunday	21	3+ halls	E12-10-103	10.6/20/-
		300	10/23/17	Monday	21	3+ halls	E12-10-103	10.6/20/-
		301	10/24/17	Tuesday	21	3+ halls	E12-10-103	10.6/20/-
		302	10/25/17	Wednesday	2.1	3+ halls	E12-10-103	10.6/20/-
	100	303	10/26/17	Thursday	2.1	3+ halls	E12-10-103	10.6/20/-
	1000	304	10/27/17	Friday	21	3+ halls	E12-10-103	10.6/20/-
	1000	20.0	10/28/17	Saturday	21	3+ halls	F12-10-103	10.6/20/-
		30.5	10/29/17	Successi	21	3+ halls	F12 10 102	10.6/20/-
		300	10/20/17	Sunday	21	2 halls	E12-10-100	10.0/20/-
~	100	307	10/30/17	Monday	21	o+ naiis	H12-10-103	10.6/20/-
$\sim 2h$		308	10/31/17	Tuesday	21	3+ halls	E12-10-103	10.6/20/-
	100	309	11/01/17	Wednesday	21	3+ halls	E12-10-103	10.6/20/-
		310	11/02/17	Thursday	21	3+ halls	E12-10-103	10.6/20/-
01	1000	311	11/03/17	Friday	2.1	3+ halls	E12-10-103	10.6/20/-
$e \sim 3h$		312	11/04/17	Saturday	2.1	3+ halls	E12-10-103	10.6/20/-
,		313	11/05/17	Sunday	21	3+ halls	E12-10-103	10.6/20/-
		-	11/06/17	Monday	21	3+ halls	F12-10-103	10.6/20/-
	100	214	11/07/17	monouy	21	2 halls	F12 10 102	10.6/20/
	1000	313	11/07/17	Tuesday	21	0+ halls	F12-10-103	10.6/20/-
	100	316	11/08/17	Wednesday	21	3+ halls	E12-10-103	10.6/20/-
		317	11/09/17	Thursday	21	3+ halls	E12-10-103	10.6/20/-
	1000	318	11/10/17	Friday	21	3+ halls	E12-10-103	10.6/20/-
	1000	319	11/11/17	Saturday	2.1	3+ halls	E12-10-103	10.6/20/-
		320	11/12/17	Sunday	2.1	3+ halls	E12-10-103	10.6/20/-
	100	321	11/13/17	Monday	2.1	3+ halls	E12-10-103	10.6/20/-
		322	11/14/17	Tuesday	21	3+ halls	E12-10-103	10.6/20/-
		323	11/15/17	Wednesday	21	3+ halls	F12-10-103	106/20/-
41			11/16/17	Thursday	21	3+ halls	F12 10 102	10.6/20/-
$1e \sim 4n$	1000	324	11/17/17	mursuey	21	2 halls	E12-10-100	10.0/20/-
	and the second	325	11/17/17	Friday	21	0+ halls	F12-10-103	10.6/20/-
		326	11/18/17	saturday	21	o+ haus	F12-10-105	10.6/20/-
The Party New York, Name		327	11/19/17	Sunday	21	3+ halls	E12-10-103	10.6/20/-
		328	11/20/17	Monday	2.1	3+ halls	E12-10-103	10.6/20/-
		329	11/21/17	Tuesday	2.1	3+ halls	E12-10-103	10.6/20/-
		330	11/22/17	Wednesday	down	1		
		331	11/23/17	Thursday	down			
		332	11/24/17	Friday	down			
Contraction of the		333	11/25/17	Saturday	down			
hear		334	11/26/17	Sunday	down			
Dean		334	11/20/17	Sunday	down			
	265	350	11/2/11/	Monday	21	Destroy		
		336	11/28/17	Tuesday	21	Restore		
		337	11/29/17	Wednesday	21	Restore		
		338	11/30/17	Thursday	2.1	NOTE 17.4	E12-10-103	10.6/20/-
		339	12/01/17	Friday	2.1		E12-10-103	10.6/20/-
		340	12/02/17	Saturday	21	3+ halls	E12-10-103	10.6/20/-
		341	12/03/17	Sunday	21	3+ halls	E12-10-103	10.6/20/-
		347	12/04/17	Monday	21	3+ halls	E12-10-103	10.6/20/-
		342	12/05/17	Tuerday	21	3+ halls	F12-10-103	10.6/20/-
		343	12/05/17	Tuesday	21	2. 1-11-	E12-10-103	10.6/20/-
		344	12/06/17	weanesday	21	o+ naus	F12-10-105	10.6/20/-
		345	12/07/17	Thursday	21	3+ halls	E12-10-103	10.6/20/-
		346	12/08/17	Friday	21	3+ halls	Pass change (12hrs)	
		347	12/09/17	Saturday	21	3+ halls	E12-10-103	6.6/20/-

 Tests will be parasitic wrt the Hall-A operations making use of 11 GeV beam to the dump (and 1uA< I_{beam} < 100uA)

0

40

80

0

40

80

• If possible, a current scan will be coordinated with Hall-A program

Cost Estimate for BDX Experiment - Two 10" Wells

Well Installed 10" diameter

(Cost Based on bid for 16"

Backfill & compaction

Concrete slab on grade

5'x5'x6" (To act also as Wf

Air Blower to keep the well

QUANTITY

2.00

2.00

1.00

2.00

1.00

2.00

UNITS RATE

\$10,000

\$2,000

\$1,000

\$500

\$1,200

\$1,000

\$20,000

\$4,000

\$1,000

\$1,000

\$1,200

\$2,000

Preparation, quick scan at different depth,

10

20

40

30

60

120

Ea.

Ea.

Ea.

Ea.

Ea.

Ea.

1) The Estimate is based on the assumption that no radioactive contamination of underground soil or water is encountered during

2) Ground exploration will need to be done before detailed design done. This will also be used to ascertain no radioactive contamin

20

10

4

2.8

1.4

0.6

Position | Depth (cm) | $\operatorname{Rate}_{Crystal}(kHz)$ | Run time (mn) | N_{Evnt} collected

DESCRIPTION

well)

Generator

against uplift)

Grand Total

 \mathbf{B}

В

 \mathbf{B}

 \mathbf{C}

 \mathbf{C}

С

Ground exploration

NUMBER

4

NOTES:

drilling of the well

in the well area

Fall 2017

The BDX crystals

Requirements:

- High density
- High light yield
- Cost-affordable for a \sim m³ detector volume
- Good timing (desirable)

Possible options: BaF2 Csl BSO

A dedicated measurement campaign to characterise the crystal properties

- · Light yield (with SiPM readout!)
- Intrinsic decay time / time resolution

Parameter	Values
Radiation length	1.85 cm
Molière radius	3.8 cm
Density	4.53 g/cm ³
Light yield	50,000 γ/MeV
Light yield temp. coeff.	0.28%/°C
Peak emission λ_{max}	565 nm
Refractive index (λ_{max})	1.80
Signal decay time	680 ns (64%)
	3.34 us (36%)

CsI(TI) + SiPM readout

Crystals are available from BABAR em calorimeter

- Size: (5x5)cm² front face, (6x6)cm² back face, 30cm length
- 820 crystals available from end cap
- Decay time: fast 900ns, slow 4000ns
- LY= 50k γ/MeV

SiPM readout

- Size: (6x6) mm², 25µm, 57.6k cells, trenched, pde=25%
- SPE capability
- CsI(TI): 40 pe/MeV

28

Time resolution: ~5ns (MIPs)

Due to the large LY signals at ~MeV level are detectable Despite a long scintillation time a few ns time coincidence is possible

Hall A approved experiments

M.Battaglieri - INFN GE

Any guess about the DM mass and interaction?

★ (Obvious) first guess: DM interaction in the range of the weak force scale (WIMPS) with DM mass in the range of TeV

WIMPs paradigm is not the only option (keeping the DM thermal origin)

DM
gDark
DM
$$\overline{q}$$

 $\langle \sigma v \rangle \sim$ g^2 Dark g^2 SM M^2 DM/ M^4 mediator

Light Dark Matter

Light Dark Matter (<TeV) naturally introduces light mediators

New interaction

* Definition of [adimensional] variable $y \sim g^2_{\text{Dark}} g^2_{\text{SM}} (M_{\text{DM}}/M_{\text{mediator}})^4 \sim \langle \sigma v \rangle M^2_{\text{DM}}$

$$\langle \sigma v \rangle \propto \epsilon^2 \alpha_D \frac{m_{\varphi}^2}{m_{A'}^4} = \epsilon^2 \alpha_D \frac{m_{\varphi}^4}{m_{A'}^4} \frac{1}{m_{\varphi}^2} = \frac{y}{m_{\varphi}^2}$$

Computed for $m_{A'}/m_{\phi/\chi} = 3$

But thermal target largely insensitive to this ratio

30

- Cab 12