Update to the JLab Eta Factory (JEF) Proposal (C12-14-004)

Liping Gan University of North Carolina Wilmington

(for the GlueX Collaboration and Other Participants)

Proposed JEF experiment

Simultaneously measure η decays: $\eta \rightarrow \pi^0 \gamma \gamma$, $\eta \rightarrow 3\gamma$, and ...

- η produced on LH₂ target with 8.4-11.7 GeV tagged photon beam: $\gamma+p \rightarrow \eta+p$
- Reduce non-coplanar backgrounds by detecting recoil protons with GlueX detector
- Upgraded Forward Calorimeter with High resolution, high granularity
 PWO insertion (FCAL-II) to detect multi-photons from the η decays

Why η is a unique probe for QCD and BSM physics?

- A Goldstone boson due to spontaneous breaking of QCD chiral symmetry
 - → η is one of key mesons bridging our understanding of low-energy hadron dynamics and underlying QCD

All its possible strong and EM decays are forbidden in the lowest order so that η has narrow decay width (Γ_η =1.3KeV compared to Γ_ω=8.5 MeV)
 Enhance the higher order contributions (by a factor of ~7000 compared to ω decays). Sensitive to weakly interacting forces.

- Eigenstate of P, C, CP, and G: I^GJ^{PC}=0⁺0⁻⁺
 tests for C, CP
- All its additive quantum numbers are zero and its decays are flavor-conserving

Overview of JEF Physics

Mode	Branching Ratio	Physics Highlight	Photons	Ma	ain physics goals:
priority:					
$\gamma + B'$	beyond SM	leptophobic vector boson	4	i. –	Search for sub-GeV
$\pi^0 + \phi'$	beyond SM	electrophobic scalar boson	4		dauge bosons:
$\pi^0 2\gamma$	$(2.7\pm0.5)\times10^{-4}$	χ PTh at $\mathcal{O}(p^6)$	4		leptophobic vector B'
$3\pi^0$	$(32.6 \pm 0.2)\%$	$m_u - m_d$	6		and electrophobic
$\pi^+\pi^-\pi^0$	$(22.7 \pm 0.3)\%$	$m_u - m_d$, CV	2		calar Φ'
3γ	$< 1.6 \times 10^{-5}$	CV, CPV	3		Scalar Ψ
ancillary:					Directly constrain CVPC
4γ	$< 2.8 \times 10^{-4}$	$< 10^{-11}[4]$	4	<u>н.</u>	Directly constrain CVPC
$2\pi^0$	$< 3.5 \times 10^{-4}$	CPV, PV	4		
$2\pi^0\gamma$	$< 5 \times 10^{-4}$	CV, CPV	5	iii	Probe internlay of VMD
$3\pi^0\gamma$	$< 6 \times 10^{-5}$	CV, CPV	6		& scalar resonances in
$4\pi^0$	$< 6.9 \times 10^{-7}$	CPV, PV	8		ChPT to calculate
$\pi^0\gamma$	$< 9 \times 10^{-5}$	CV,	3		LEC's in the chiral
		Ang. Mom. viol.			Lagrangian
normalization:					
2γ	$(39.3 \pm 0.2)\%$	anomaly, η - η' mixing		/ iv.	Improve the quark mass
		E12-10-011			ratio via η <i>→</i> 3π

FCAL-II is required

Key Channel: $\eta \rightarrow \pi^0 \gamma \gamma$

2. Confinement QCD:

Search for sub-GeV gauge bosons

- A leptophobic vector B': $\eta \rightarrow \gamma B', B' \rightarrow \pi^{0}\gamma$ PR,D89,114008
- An electrophobic scalar Φ' :

η→π⁰Φ΄, Φ΄→γγ

A 100 keV-100 MeV

electrophobic scalar can solve proton radius and
 (g-2)_μ puzzles.

PRL 117,101801 (2016); PL B740,61(2015)

 A rare window to probe interplay of VMD & scalar resonance in ChPT

"Vector Portal" to Dark Sector

 e^+

Most A' searches look for A' \rightarrow *I*⁺*I*, relying on the leptonic coupling of new force 2. Leptophobic B' (dark ω , $\gamma_{\rm B}$, or Z'): $\frac{1}{3}g_{\rm B}\overline{q}\gamma^{\mu}qB_{\mu}$

> Gauged baryon symmetry U(1)_B T.D. Lee and C.N. Yang, Phys.Rev.,98, 1501 (1955)

- m_B<m_π is strongly constrained by longrange forces searches; the m_B>50 GeV has been investigated by the collider experiments.
- GeV-scale domain is nearly untouched, a discovery opportunity!

"Vector Portal" to Dark Sector

 e^+

Most A' searches look for A' \rightarrow *I*⁺*I*⁻, relying on the leptonic coupling of new force 2. Leptophobic B' (dark ω , $\gamma_{\rm B}$, or Z'): $\frac{1}{3}g_{\rm B}\overline{q}\gamma^{\mu}qB_{\mu}$

> Gauged baryon symmetry U(1)_B T.D. Lee and C.N. Yang, Phys.Rev.,98, 1501 (1955)

- m_B<m_π is strongly constrained by longrange forces searches; the m_B>50 GeV has been investigated by the collider experiments.
- GeV-scale domain is nearly untouched, a discovery opportunity!

Landscape of New GeV-Scale Forces

Quark coupling

Also a third axis: decays to invisible states (neutrinos, light dark matter) Davoudiasl et al (2012), Batell et al (2009), deNiverville et al (2011,2012)

Landscape of New GeV-Scale Forces

Quark coupling

Also a third axis: decays to invisible states (neutrinos, light dark matter) Davoudiasl et al (2012), Batell et al (2009), deNiverville et al (2011,2012)

Landscape of New GeV-Scale Forces

Also a third axis: decays to invisible states (neutrinos, light dark matter) Davoudiasl et al (2012), Batell et al (2009), deNiverville et al (2011,2012)

Impact of the SM allowed $\eta \rightarrow \pi^0 \gamma \gamma$ measurement

- A rare window to probe interplay of VMD & scalar resonances in ChPT to calculate O(p⁶) LEC's in the chiral Lagrangian
- The major contributions to $\eta \rightarrow \pi^0 \gamma \gamma$ are two O(p⁶) counter-terms in the chiral Lagrangian \longrightarrow an unique probe for the high order ChPT.

L. Ametller, J, Bijnens, and F. Cornet, Phys. Lett., B276, 185 (1992)

Shape of Dalitz distribution is sensitive to the role of scalar resonances.

Projected JEF on SM Allowed $\eta \rightarrow \pi^0 \gamma \gamma$

We measure both BR and Dalitz distribution

- model-independent determination of two LEC's of the O(p⁶) counter- terms
- ♦ probe the role of scalar resonances to calculate other unknown O(p⁶) LEC's

J. Bijnens, talk at AFCI workshop

Charge Conjugation Invariance

- Maximally violated in the weak force and is well tested.
- Assumed in SM for electromagnetic and strong forces, but it is not experimentally well tested (current constraint: A≥ 1 GeV)
- EDMs place no constraint on CVPC in the presence of a conspiracy or new symmetry; only the direct searches are unambiguous.

M. Ramsey-Musolf, phys. Rev., D63, 076007 (2001); talk at the AFCI workshop

C Violating η neutral decays

Mode	Branching Ratio (upper limit)	No. γ's
3γ	< 1.6•10 ⁻⁵	0
$\pi^0\gamma$	< 9•10 ⁻⁵	3
2π ⁰ γ	< 5•10 ⁻⁴	
3γπ ⁰	Nothing published	5
$3\pi^0\gamma$	< 6•10 ⁻⁵	7
3γ2π ⁰	Nothing published	

Charge Conjugation Invariance

- Maximally violated in the weak force and is well tested.
- Assumed in SM for electromagnetic and strong forces, but it is not experimentally well tested (current constraint: A≥ 1 GeV)
- EDMs place no constraint on CVPC in the presence of a conspiracy or new symmetry; only the direct searches are unambiguous.

M. Ramsey-Musolf, phys. Rev., D63, 076007 (2001); talk at the AFCI workshop

C Violating η neutral decays

Mode	Branching Ratio (upper limit)	No. γ's
3γ	< 1.6•10 ⁻⁵	2
$\pi^0\gamma$	< 9•10 ⁻⁵	3
2π ⁰ γ	< 5•10 ⁻⁴	
3γπ ⁰	Nothing published	5
3π ⁰ γ	< 6•10 ⁻⁵	7
3γ2π ⁰	Nothing published	•

Experimental Improvement on $\eta \rightarrow 3\gamma$

- SM contribution: BR(η→3γ) <10⁻¹⁹ via P-violating weak interaction.
- A new C- and T-violating, and P-conserving interaction was proposed by Bernstein, Feinberg and Lee

Phys. Rev., 139, B1650 (1965)

 A calculation due to such new physics by Tarasov suggests: BR(η→3γ)< 10⁻²

Sov.J.Nucl.Phys.,5,445 (1967)

Improve BR upper limit by one order of magnitude to directly tighten the constraint on CVPC new physics

PAC42 Recommendation

- "The proposed measurements appear to be feasible and the experiment is well suited for the tagged Hall D photon beam."
- "The PAC understands the very strong scientific interest of performing new measurements of rare η decays with improved sensitivity to test the SM."
- "the PAC sees the determination (iv) of Q (quark mass ratio) from the $\eta \rightarrow 3\pi$ decay ratio and the Dalitz distribution as the most compelling physics result and recommends to perform this measurement as a run group with GlueX and experiment PR12-10-011" in progress

Address PAC42 Recommendation

- GlueX-IV running conditions
- Material of DIRC detector
- Upgraded FCAL-II

- Tagger accidental fraction
- Production rate of η and η'
 - Full simulation: key signal η→π⁰γγ with backgrounds

Photon energy

Tagger Accidental Fraction

E _γ (GeV)	γ's on tagger (Hz)	γ's on target (Hz)	Collimator acceptance (%)	Accidental fraction (%)
8.4-9.0	1.3x10 ⁸	5.1x10 ⁷	41	17
9.0-11.7	2.7×10^{8}	4.3x10 ⁷	16	7.3

The accidental fraction is defined as the ratio of the multi-hit events over the single-hit events, P(N>1)/P(N=1), per beam bunch (4ns) per 350 MeV in the tagger.

- Accidental fractions are manageable
- Photon flux on the target is doubled from the original proposal

Tagged η and η' Production Rate

JEF for 100 days of beam:

	η	η'
Tagged mesons	6.5x10 ⁷	$4.9x10^{7}$

Previous Experiments:

Experiment	Total ղ	Total η'
CB at AGS	10 ⁷	-
CB MAMI-B	2x10 ⁷	-
CB MAMI-C	6x10 ⁷	-
WASA-COSY	~10 ⁹	-
KLOE	10 ⁸	5x10⁵
BESIII	10 ⁶	6x10 ⁶

JEF offers a competitive η/η' factory

Tagged η and η' Production Rate

JEF for 100 days of beam:

	r		η	D	ecays	B.R.	Physics
Tagged meso	ns 6.5x	107	$4.9x10^{7}$		U		highlight
Previous Experime		ts:		7	τ ⁰ γγ	<8×10 ⁻⁴	leptophobic B', electrophobic Φ
Experiment	Total ղ		Total ղ'		$2\pi^0$	<5×10 ⁻⁴	PV, CPV
CB at AGS	107		-		3γ	<1.1×10 ⁻⁴	CV, CPV
CB MAMI-B	2x10 ⁷		-	$\left \right _{\pi^{0}}$	0 _e + _e -	$<1.4 \times 10^{-3}$	CV CPV
CB MAMI-C	6x10 ⁷		-			<1.4/10	
WASA-COSY	~10 ⁹		-	η	$ e^+e^- $	$<2.4 \times 10^{-3}$	CV, CPV
KLOE	10 ⁸		5x10⁵] Γγ	ve ⁺ e ⁻	$(4.73 \pm 0.30) \times$	ChPT,
BESIII	106		6x10 ⁶	1 [10 4	dark A'
	10						

JEF offers a competitive η/η' factory

Some interesting η' decays:

Ratio of Signal to Background 0.5 0.52 0.54 0.56

N (PWO) > 2

N (PWO) > 3

JEF has full capabilities for running concurrently with GlueX and any experiments with LH2 target in Hall D

Unique of JEF Experiment

Highly suppressed background with:
 a) η/η' energy boost; b) FCAL-II; c) exclusive detections

2. Simultaneously produce η and η' with similar rates

 Capability of running in parallel with GlueX and other experiments in Hall D potential for high statistics

New Equipment: FCAL-II

FCAL

HyCal

PWO vs. lead glass

Property	Improvement factor
Energy o	2
Position σ	2
Granularity	4
Radiation- resistance	10

- 1x1 m² PWO insert (2464 PWO crystal modules) with 12x12 cm² beam hole
- Similar as the inner part PrimEx HyCal with a minor modification for magnetic shielding
- Using the same techniques as the current FCAL for magnetic shielding: Annealed iron, 0.2 mm μ-metal, and ~2 cm long light guide.
 - test shows that the PMT pulse amplitude dropped <5% when the external B field up to 76 G
- Estimated total cost is ~\$4.5 M for detector and ~\$1 M for infrastructure
- ~4-5 years for all crystal modules to be constructed, ~1 year for installation

Benefits of FCAL-II to Hall D Physics Program

- Impact on GlueX spectroscopy program:
 - Better neutral particle identification for PWA.
 - More radiation-resistant calorimeter for high intensity runs

Reduce the uncertainty for the Primakoff experiment on $\Gamma(\eta \rightarrow \gamma \gamma)$ from 3% to 2%

Beam Time Request

Run type	Beam Time (days)
LH ₂ Production	100
Empty target and target out	7
Tagger efficiency, TAC runs	3
FCAL-II commissioning	12
Luminosity optimization	8
Total	130

We also consider to run in parallel with GlueX. If GlueX is extended after FCAL-II upgrade (~2023), there could be overlap in the beam time.

Summary

- 12 GeV tagged photon beam with GlueX setup offers a unique η/η' factory to test SM and search for new BSM physics, with two orders of magnitude in background reduction in the neutral rare decay modes compared to other facilities in the world.
- ◆ JEF has full capabilities to run concurrently with GlueX
- Simultaneously measure η/η' decays with main physics goals:
 - > Probe a sub-GeV leptophobic vector B' and an electrophobic scalar Φ' through $\eta/\eta' \rightarrow \pi^0 \gamma \gamma$
 - > Directly constrain CVPC new physics via $\eta {\rightarrow} 3\gamma$ and other C-violating η/η' decays
 - > Test the role of scalar dynamics in ChPT through $\eta \rightarrow \pi^0 \gamma \gamma$
 - > Improve the light quark mass ratio via $\eta \rightarrow 3\pi$ (which has been taking data in parallel to GlueX)
- Upgraded FCAL-II with PWO insertion will have significant positive impact on other experiments in Hall D: GlueX and PrimEx-η

The End

Thank you!

Analysis Results from GlueX Data

Efficiency and Yield

Mode	BR	Reconstruction efficiency	Event per 100 days
η⊸γγ	0.3941	0.38	1.5x10 ⁷
η <i>-</i> →π ⁰ γγ	2.56x10 ⁻⁴	0.28 (0.09)	6900 (2200)
η →3 π ⁰	0.3268	0.20	6.3x10 ⁶
η- → 3γ	<1.6x10 ⁻⁵	0.34	-
η'→π ⁰ γγ	<8x10 ⁻⁴	0.26	-
η′→3γ	<1.1x10 ⁻⁴	0.32	-

Exclusion plots for Electrophobic Scalar Φ'

Detection of Recoil Proton with GlueX

More about $\eta \rightarrow \pi^0 \gamma \gamma$

A Prime Target: Sub-GeV Mediator

Puzzles in CCDM:

- Core-vs-cusp
- Too-big-to-fail
- Missing satellite

THINGS (dwarf galaxy survey) - Oh et al. (2011)

Experimental probes for B'-boson

Discovery signals depend on the B mass:

- the $m_B < m_{\pi}$ region is strongly constrained by long-range forces search and nuclear scattering experiments.
- the $m_B > 50 GeV$ region has been investigated by the collider experiments.
- GeV-scale domain is nearly untouched.

C Invariance

- Maximally violated in the weak force and is well tested.
- Assumed in SM for electromagnetic and strong forces, but it is not experimentally well tested Current constraint: A≥ 1 GeV
- EDMs place no constraint on CVPC in the presence of a conspiracy or new symmetry; only the direct searches are unambiguous.

M. Ramsey-Musolf, phys. Rev., D63, 076007; <u>talk at the AFCI workshop</u>

CHARGE CONJUGATION (C)	INVARIANCE
$\Gamma(\pi^0 \rightarrow 3\gamma)/\Gamma_{total}$	${<}3.1{ imes}10^{-8}$, CL = 90%
η C-nonconserving decay parameters	. 0.11
$\pi^+\pi^-\pi^0$ left-right asymmetry	$(0.09^{+0.11}_{-0.12}) imes 10^{-2}$
$\pi^+\pi^-\pi^0$ sextant asymmetry	$(0.12^{+0.10}_{-0.11}) imes 10^{-2}$
$\pi^+\pi^-\pi^0$ quadrant asymmetry	$(-0.09 \pm 0.09) imes 10^{-2}$
$\pi^+\pi^-\gamma$ left-right asymmetry	$(0.9 \pm 0.4) imes 10^{-2}$
$\pi^+ \pi^- \gamma$ parameter eta (D-wave)	$-0.02\pm0.07~({\sf S}=1.3)$
$\Gamma(\eta \rightarrow \pi^0 \gamma) / \Gamma_{\text{total}}$	$< 9 imes 10^{-5}$, CL = 90%
$\Gamma(\eta \rightarrow 2\pi^0 \gamma)/\Gamma_{\text{total}}$ n decays	$<5 imes10^{-4}$, CL $=90\%$
$\Gamma(\eta \rightarrow 3\pi^0 \gamma)/\Gamma_{\text{total}}$	$< 6 imes 10^{-5}$, CL $= 90\%$
$\Gamma(\eta ightarrow 3\gamma)/\Gamma_{total}$	${<}1.6 imes10^{-5}$, CL ${=}$ 90%
$\Gamma(\eta \rightarrow \pi^0 e^+ e^-) / \Gamma_{\text{total}}$ [a]	$<$ 4 $ imes$ 10 $^{-5}$, CL = 90%
$\Gamma(\eta \to \pi^0 \mu^+ \mu^-) / \Gamma_{\text{total}} $ [a]	$<5 \times 10^{-6}$, CL = 90%
$\Gamma(\omega(782) \rightarrow \eta \pi^{\hat{0}}) / \Gamma_{\text{total}}$	$<2.1 imes10^{-4}$, CL $=90\%$
$\Gamma(\omega(782) \rightarrow 2\pi^0)/\Gamma_{total}$	$<\!\!2.1 imes10^{-4}$, CL $=90\%$
$\Gamma(\omega(782) \rightarrow 3\pi^0)/\Gamma_{\text{total}}$	$<2.3 imes10^{-4}$, CL $=90\%$
asymmetry parameter for η^\prime (958) $ ightarrow ~\pi^+\pi^-\gamma$ decay	-0.03 ± 0.04
$\Gamma(\eta'(958) \rightarrow \pi^0 e^+ e^-) / \Gamma_{\text{total}}$ [a]	$< 1.4 imes 10^{-3}$, CL $= 90\%$
$\Gamma(\eta'(958) \rightarrow \eta e^+ e^-) / \Gamma_{\text{total}}$ [a]	$<$ 2.4 $ imes$ 10 $^{-3}$, CL = 90%
$\Gamma(\eta'(958) \rightarrow 3\gamma)/\Gamma_{\text{total}}$	${<}1.0 imes10^{-4}$, CL ${=}$ 90%
$\Gamma(\eta'(958) \rightarrow \mu^+ \mu^- \pi^0) / \Gamma_{\text{total}}$	${<}6.0 \times 10^{-5}$, ${\rm CL}=90\%$
$\Gamma(\eta'(958) \rightarrow \mu^+ \mu^- \eta) / \Gamma_{\text{total}}$ [a]	${<}1.5\times10^{-5}\text{, CL}=90\%$
$\Gamma(J/\psi(1S) ightarrow \gamma \gamma) / \Gamma_{total}$	$<$ 2.7 $ imes$ 10 $^{-7}$, CL = 90%
$\Gamma(J/\psi(1S) \rightarrow \gamma \phi) / \Gamma_{total}$	${<}1.4 imes10^{-6}$, CL ${=}$ 90%
PDG 2017	

Projected JEF Results on $\eta \rightarrow \pi^0 \gamma \gamma$

Projected JEF Result

Experimental Measurements of $\eta \rightarrow 3\pi$

Physics Impact $\eta \rightarrow 3\pi$ Measurement

A clean probe for quark mass ratio:

$$Q^{2} = \frac{m_{s}^{2} - \hat{m}^{2}}{m_{d}^{2} - m_{u}^{2}} \quad \hat{m} = \frac{m_{u} + m_{d}}{2}$$

- → decays through isospin violation: $A = (m_u m_d)A_1 + \alpha_{em}A_2$
- $\succ \alpha_{em}$ is small
- > Amplitude:

Uncertainties in quark mass ratio (E. Passemar, talk at AFCI workshop)

 $A(s,t,u) = \frac{1}{Q^2} \frac{m_K^2}{m_\pi^2} (m_\pi^2 - m_K^2) \frac{\mathcal{M}(s,t,u)}{3\sqrt{3}F^2},$

FCAL vs. FCAL-II

FCAL-II (PWO) vs. FCAL (Pb glass)

Property	Improvement factor
Energy o	2
Position σ	2
Granularity	4
Radiation- resistance	10

S/N Ratio vs. Calorimeter Types

signal: $\eta \rightarrow \pi^0 \gamma \gamma$, background: $\eta \rightarrow 3\pi^0$

Optimization of PWO Insert Size

$$TOM = \frac{N(\eta \to \pi^0 \gamma \gamma)}{\sqrt{N_b(\eta \to 3\pi^0)}}$$

Magnetic Shield Test Result

- A Hamamatsu R4125HA PMT wrapped with two layers of 0.1mm thick μ-metal
- Helmholtz coils to produce B field along the axis of PMT up to 76.5 G
- PMT was placed inside of the inner hole (Φ=20.5 mm) of a rectangular soft iron and was ~16 mm receding from the entrance of the hole.

Magnetic Shield Continue

- Our recent test result looks encouraging.
- A full calorimeter assembly with a soft iron array will further improve the effect on the magnetic field shielding.
- Double-layer shield (the outer soft iron and the inner μ-Metal) was used for the Lead glass counter (4x4x45 cm³) in the current FCAL. It was proving to work for magnetic field up to 200 G.
- The same technique is planned for future PWO counter (2x2x18 cm³): annealed soft iron, μ-metal, and ~2 cm long light guide between PMT and crystal. It should provide sufficient shielding for PMTs under the environment of the maximum field of GlueX solenoid magnet.

Estimated Cost for FCAL-II

Item	Channels	Unit Cost	Cost
PWO crystal	2464	\$790	\$1.95M
PMT+base+house	2464	\$450	\$1.11M
Flash ADC	2464-616=1848	\$378	\$0.70M
HV	2464	\$300	\$0.74M
Total			\$4.50M

Estimated Cost for FCAL-II Infrastructure

Items	Cost (\$)
Frame	300k
7 VXS crates with server	300K
1848 signal & HV cables	300K
FCAL platform modification	100k
Total	1M

Estimated Schedule for FCAL-II Installation

Activities	time (month)
Disconnect cables, disassemble FCAL and inspect lead glass counters	2
Install additional 2000 channels of cable and electronics	1
Stack FCAL-II counters, refurbish some bad lead glass counters	6
Connect cables, monitoring system, cooling system	1
Final check-out	2
Total	12

Filter Background with η Energy Boost ($\eta \rightarrow \pi^0 \gamma \gamma$)

CB-AGS Experiment $\pi p \rightarrow \eta p (E_{\pi} = 730 \text{ MeV})$

Jlab: γp→ηp (E_γ = 9-11.7 GeV)

- \succ $\eta \rightarrow \pi^0 \pi^0 \pi^0 \rightarrow 6\gamma$
- $\succ \pi^- p \rightarrow \pi^0 \pi^0 + neutron$

Invariant Mass: η → γ γ

Invariant Mass: $\pi^0 \rightarrow \gamma \gamma$

p + γ → p + X(1400), X(1400) → η π⁰ π^0 n FCAL FCAL FCAL FCAL II II Overall $\gamma\gamma$ mass resolution, MeV 6.6 4.1 22.3 17 **Both photons in Forward Calorimeter** Fraction of events 52 % 32 % 6.2 3.2 19 $\gamma\gamma$ mass resolution, MeV 12 **One photon in Forward Calorimeter and one in BCAL** Fraction of events 19.8 % 55 % 6.2 7.0 22.9 $\gamma\gamma$ mass resolution, MeV 19.5