3D PDF Extraction and VAlidation framework (EVA)

Nobuo Sato University of Connecticut CLAS Collaboration Meeting, Jefferson Lab, 2017

Short theory review

Semi inclusive deep inelastic scattering (SIDIS)

Lab frame

Semi inclusive deep inelastic scattering (SIDIS)

Breit frame

Semi inclusive deep inelastic scattering (SIDIS)

Breit frame

How is $p_{\rm T}^h$ generated at short distances?

 p^h_\perp

Current fragmentation Collinear factorization

Current fragmentation TMD factorization Soft region ????

Target region Fracture functions

How is $p_{\rm T}^h$ generated at short distances?

Current fragmentation:

How is $p_{\rm T}^h$ generated at short distances?

SIDIS differential cross section

$$\begin{split} & \frac{d\sigma}{dx \, dy \, d\Psi \, dz \, d\phi_h \, dP_{h\perp}^2} = \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \, \cos\phi_h \, F_{UU}^{\cos\phi_h} \right. \\ & + \varepsilon \, \cos(2\phi_h) F_{UU}^{\cos 2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin\phi_h \, F_{LU}^{\sin\phi_h} \\ & + S_{||} \left[\sqrt{2\varepsilon(1+\varepsilon)} \sin\phi_h \, F_{UL}^{\sin\phi_h} + \varepsilon \sin(2\phi_h) \, F_{UL}^{\sin 2\phi_h} \right] \\ & + S_{||} \lambda_e \left[\sqrt{1-\varepsilon^2} \, F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)} \, \cos\phi_h F_{LL}^{\cos\phi_h} \right] \\ & + |\vec{S}_{\perp}| \left[\sin(\phi_h - \phi_S) \, \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon \, F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) + \varepsilon \, \sin(\phi_h + \phi_S) \, F_{UT}^{\sin(\phi_h + \phi_S)} \right. \\ & + \varepsilon \, \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \psi_S)} + \sqrt{2\varepsilon(1+\varepsilon)} \sin\phi_S \, F_{UT}^{\sin\phi_S} \\ & + \sqrt{2\varepsilon(1+\varepsilon)} \sin(2\phi_h - \phi_S) \, F_{UT}^{\cos(\phi_h - \phi_S)} \right] \\ & + |\vec{S}_{\perp}| \lambda_e \left[\sqrt{1-\varepsilon^2} \cos(\phi_h - \phi_S) F_{LT}^{\cos(\phi_h - \phi_S)} + \sqrt{2\varepsilon(1-\varepsilon)} \cos\phi_S \, F_{LT}^{\cos\phi_S} \right. \\ & \left. + \sqrt{2\varepsilon(1-\varepsilon)} \cos(2\phi_h - \phi_S) \, F_{LT}^{\cos(2\phi_h - \phi_S)} \right] \right\} \end{split}$$

EVA framework

K. Tezgin (UConn)

D. Riser (UConn)

EVA framework

Objectives

- Computational tools for TMD studies
- General purpose structure functions interface
- MCEG for detector simulation studies
- Extraction of TMDs via likelihood analysis

EVA framework

Details

Main programming language: Python

Easy to integrate with existing Fortran codes

- Extensive libraries for state-of-the-art data analysis kits
- Interface with ROOT (pyROOT)

Extensive libraries for parallel computing

1) Structure functions (SFs) library	2) MCEG
 Generic interface to SFs 	Sampling methods:
 Implementation of the 18 SIDIS SFs 	Vegas integratorMCMC sampling
 SFs to neural nets for SFs with slow performance 	 Radiative corrections JSON format as ouput
3) Detector simulation	4) TMD extraction
Not part of this project	 JSON format as input
 JSON files as input 	 Likelihood analysis
 JSON files as output 	 Least squares minimization Iterative Monte Carlo (IMC) MCMC sampling (HMC) Nested sampling (nestle)

SIDIS in WW-approx. (Prokudin et al., in prep.)

- The 18 STFs are described in terms of "known" TMDs
- TMDs are computed using the Gaussian model
- No treatment for gluon ration
- Dedicated numerical library for SIDIS in WW-approx.

K. Tezgin (UConn)

Neural Net representation of SFs

Summary and outlook

New analyss framework for TMDs

- Implementation of all 18 SFs using WW-approx
- Neural Nets representation of SFs
- TMD extraction package

TO DO

- Perform a new global analysis for TMDs within the WW-approx
- Implementation of MCEG
- Validation of input and output TMDs