Hadron Spectroscopy 1 Remote connection: https://bluejeans.com/827115701 Convener: Marco Battaglieri (INFN-GE) Location: CEBAF Center (Auditorium) Hadron Spectroscopy Working Group Business 20' Speaker: Marco Battaglieri (INFN-GE) Material: Slides 7 09:20 The cross section measurement of the 3\pi final states from CLAS-g12 20' Speaker: Zulkaida Akbar (FSU) Material: Slides 📆 09:40 Photoproduction of 3pi with CLAS 20' Speaker: Paul Eugenio (Florida State University) Material: Slides 📆 10:00 Status update on the analysis of eta->pi+pi-X, X=pi0,g with CLAS 20' Speaker: Daniel Lersch (Juelich Research Center) Material: Slides 📆 10:20 Discussion 10' 10:30 Coffee Break 30' 11:00 JPAC report 20' Speaker: Cesar Fernandez-Ramirez (UNAM) Material: Slides 📆 11:20 Light meson decay 20' Speaker: Susan Schadmand (Forschungszentrum Juelich) Material: Slides 📆 11:40 CLAS12 MesonEx trigger studies 20' Speaker: Stefan Diehl (Giessen University) Material: Slides 😬 12:00 Near threshold J/psi photoproduction and study of LHCb pentaguarks with CLAS12 Speaker: Valery Kubarovsky (Jefferson Lab) Material: Slides 📆 12:20 Analysis reviews status 40'

HSWG

CLAS Collaboration Meeting JLab, June 15 2017

Agenda

- * CLAS6 data analysis: 3pi
- * CLASI2 related studies
- * LHCb pentag proposal HSWG reviewed and submitted to PAC45
- * Status of ongoing analysis

Activities

- * Early results report (B.McKewon)
- * Are we ready for physics? KPP data analysis showed that we can make it
- * Make good use of JPAC results and support
- * Any analysis ready for review has to give a presentation to the HSWG
- *Analysis ready for a plenary presentation (e.g. Paul's $\gamma n \rightarrow p\pi$ Differential Cross Section Measurements with CLAS)

Talks

- * Over all CLAS contributions, HSWG-related are 40%
- * Regular interactions with the CSC
- * List of possible topics/speakers on the latest CLAS results
- * REMINDER: Communicate talks and proceedings to the CSC
- * JSA-TFC funds \$20k allocated for 2017

WG Reviews status

Polarized structure function sigmaLT from the single pi0 electroproducion on the proton in the resonance region

PI: Nick Markov

RC:V.Crede, Ralf Goethe, Yelena Prok

Started Sept 2014

Status: is moving forward

Measurement of Cross-Sections of exclusive \$pi^{0}\$ Photoproduction on Hydrogen from 1.1 GeV - 5.45 GeV using e +e-gamma

PI: Michael Kunkel

RC: Carlos Salgado (Chair), Lei Guo , Yordanka Ilieva

Status: 2nd round, healthy

Cascade polarization in photoproduction

PI: J.Bono et al.

RC: A. D'Angelo (Chair), M.Kunkel, E Pasyuk

Status: 2nd round, healthy

PI:T.Chetry

RC: B.McKinnon, P.Cole, N.Zachariou

Status: 1st round

DONE!

Less than 6 months!

WG Reviews status

New since last meeting

Photoproduction of the 3π mesons in the reaction $\gamma p \to \pi + \pi + \pi - n$ with CLAS detector at 6 GeV/c2

PI:P.Eugenio

RC: D.Glazier (chair), A.Filippi, M.Dugger Status: 1st round, waiting for response

Exclusive pi- Electroproduction off the Neutron in Deuterium in the Resonance Region

PI:Y.Tian

RC: Nikolay Markov (Chair), Mikhail Bashkanov, Eugene

Isupov

Status: 1st round

In progress

Radiative decay of eta' to pi+ pi- gamma from gll data set

PI:G. Mbianda Njencheu

RC: R. Schumacher, S. Schadmand, A. Celentano

Status: Ist round, stud graduated, revised note in prep

Polarization Observables T and F in the $\vec{p}(\gamma,\pi 0)$ p Reaction

PI:H.Jiang

RC: Barry Ritchie (Chair), Volker Crede, Bryan McKinnon Status: Ist round, still waiting for response (was March?)

WG Reviews status

Measurement of Sigma in pi- photoproduction on the neutron from the g13b dataseta

PI: D.Sokhan (GlasgowU) et al.

RC: Eugene Pasyuk (Chair), Nicholas Zachariou, Paul Mattione

Started Jul 2016

Status: lost contact with the author after 1st round, RESUMED

YESTERDAY!

Pentaquark search in g10 by using the MMSA method

PI: Kenneth Hicks et al.

RC: Stepan Stepanyan (Chair), Lei Guo, Bryan McKinnon

Started Aug 2015

Status: stopped communication from 6 months, NO progress

Spin observables in eta meson photoproduction on the proton from FROST data

PI: R.Tucker (ArizonaU) et al.

RC: K.Livingston, J.Price, Xiangdong Wei

Sterted July 2016

Status: on-hold, still on-hold but authors are alive

KLambda and KSigma from FROST

PI: N.Walforf et al.

RC: S.Strauch, M.Holtrop, P.Mattione,

Started May 2015

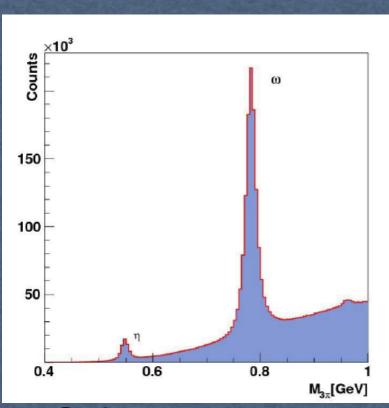
I round of comments in May 2015, waiting for a revise Status: stalled for a long while, now it seems to be resurrected, unfortunately NO

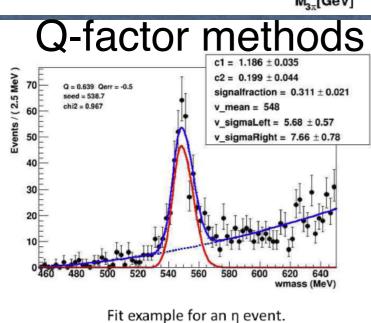
Exclusive Photo-Production Measurement of K +Sigma*- off Quasi-Free Neutrons in Deuterium

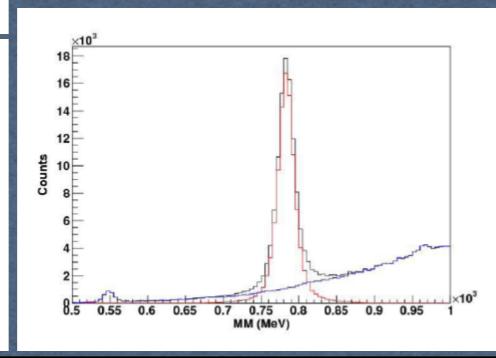
Pl: H.Lu (SCU) et al.

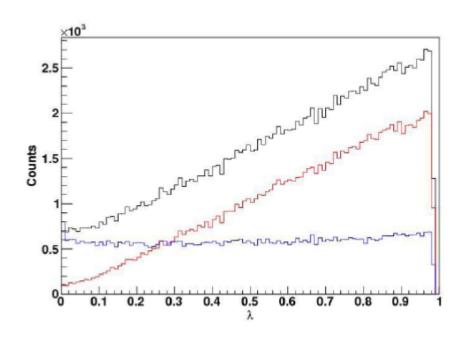
RC: N.Zachariou, M.Dugger, D.MacGregor

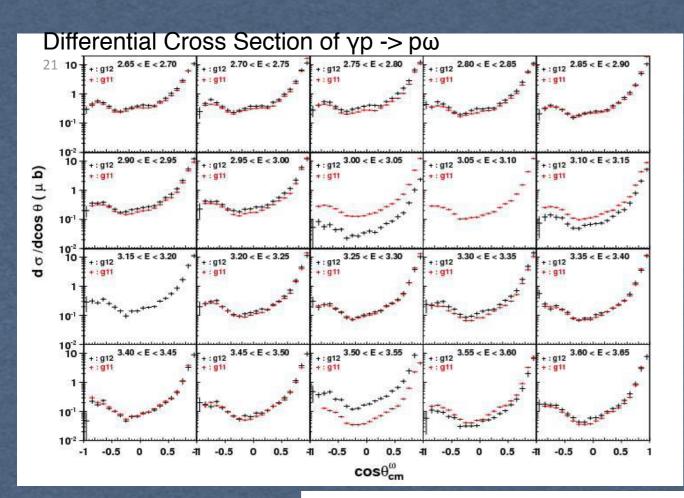
Started in 2012 (!)

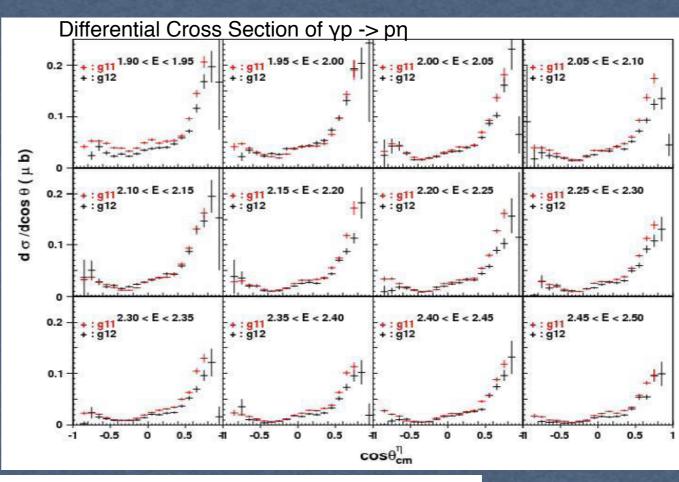

Status: resumed with reshuffled committee, still waiting ...

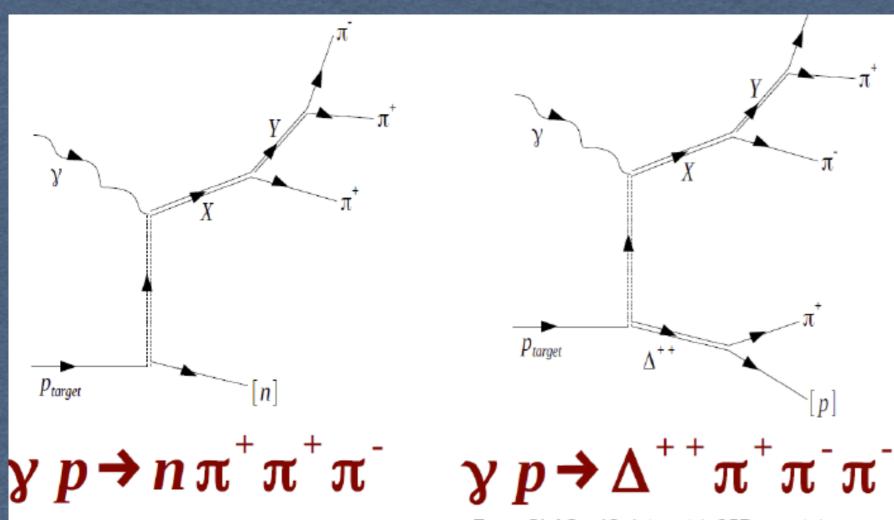

Asked to SC/run-group to go trough the analysis and see if the latest issues have an easy fix H.Lu will work in the next few months

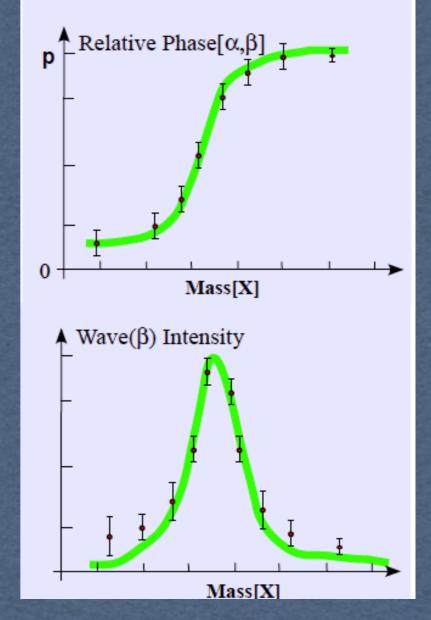

Photo-production of $\pi^+\pi^-\pi^0$ using CLAS-g12 at Jefferson Laboratory


ZULKAIDA AKBAR




γp -> pω	γp -> K ⁰ Σ ⁺	γр -> рη
High statistic isospin filter -> Benchmark measurement	Assess the validity of SU(3) quark model in describing resonance decay	Assess the validity of SU(3) quark model in describing resonance decay
Missing baryon resonance study through vector meson photo production	The strangeness production study through Isospin related channel	Testing the model of η photo production at higher energy using FESR by JPAC
	Missing baryon resonances study	
	There have been many attempts to measure the $\gamma p \rightarrow K^0 \Sigma^+$ cross section (not yet published)	





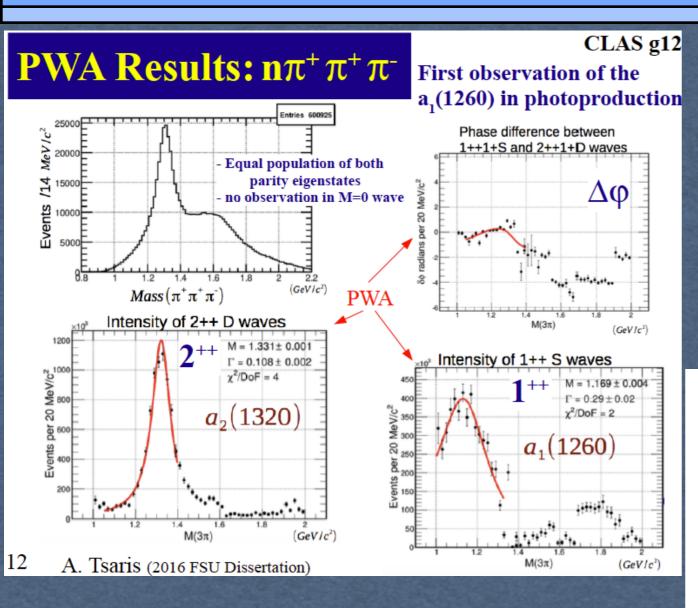
Run	Channel	Observable	Status	PIC
FROST	γp -> pω	E	Wide Collaboration review	Zulkaida Akbar
FROST	γp -> pω	Σ	Paper review	Priyashree Roy
g12	γp -> pω	Cross section	Analysis note in preparation	Zulkaida Akbar
g12	γp -> pη	Cross section	Analysis note in preparation	Zulkaida Akbar
g12	γp -> K ⁰ Σ+	Cross section	Analysis note in preparation	Kyle Romines/Zulkaida Akbar
g12	γp -> pφ	Cross section	Starting	Tianqi hu/Benjamin Gibson
g12	γp -> pω	SDME	Paused	Chris Zeoli/Zulkaida Akbar
g12	γp -> pπ ⁺ π ⁻	Cross section & Polarization observable	Will start in Fall	Zulkaida Akbar

Photoproduction of 3\pi with CLAS

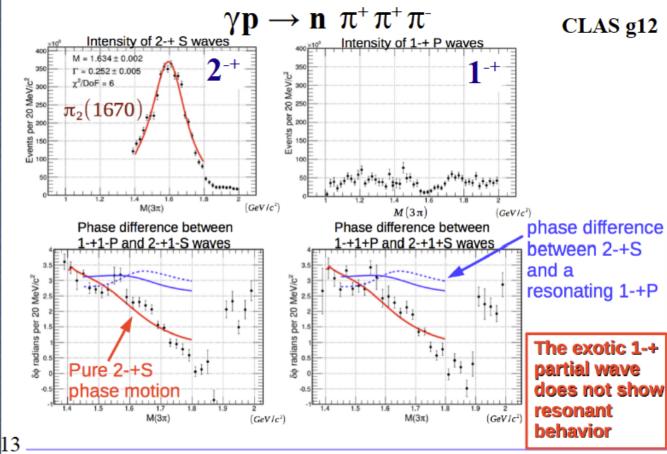
P. Eugenio Florida State University

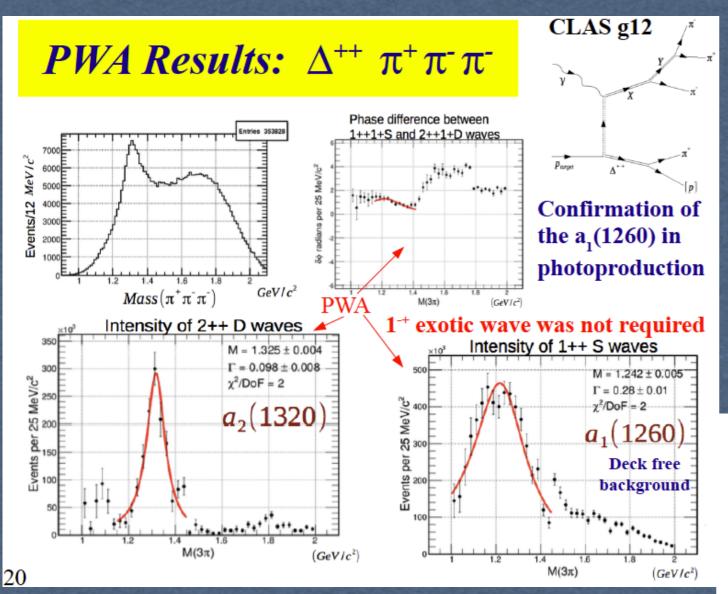
Form CLAS-g12 dataset (~25B events):

Three charged pions selected


Neutron is identified by energy and momentum conservation

Form CLAS-g12 dataset (~25B events):


Four charged pions selected


 Proton is identified by energy and momentum conservation

Partial Wave Analysis in the 3π sample

$\pi_2(1670)$ & Non-resonant 1⁻⁺ wave

• $\gamma p \rightarrow n \pi^{\dagger} \pi^{\dagger} \pi^{\bar{}}$:

- The $a_2(1320)$ and the $a_1(1260)$ are observed
- The $\pi_2(1670)$ is observed
- The J^{PC} = 1⁻⁺ does not show resonant behavior and it is strongly consistent with a non-resonant non-interfering wave relative to a resonant $\pi_2(1670)$

• $\gamma p \rightarrow \Delta^{++} \pi^{+} \pi^{-} \pi^{-}$:

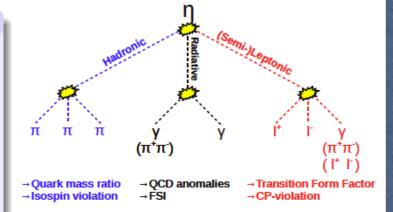
- A first time PWA of the $\Delta^{++}3\pi$ system
- The $a_2(1320)$ and the $a_1(1260)$ are observed
- The $\pi_2(1670)$ is observed

• Analysis Review is underway :

- written draft PRL for $n3\pi$
- writing longer paper to include details of n3p and $\Delta^{++}3\pi$

10

Status Update on the Analysis of $\eta \to \pi^+\pi^-(X)$, $X = \pi 0/\gamma$ with CLAS

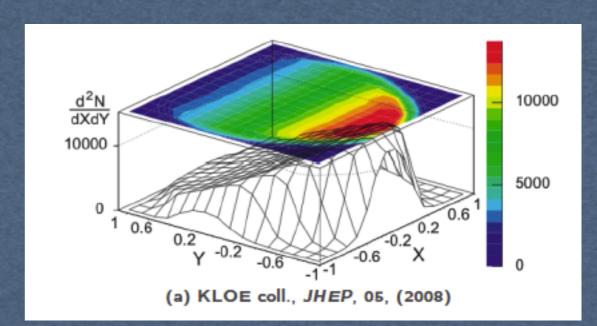

Daniel Lersch

One Meson, many Opportunities

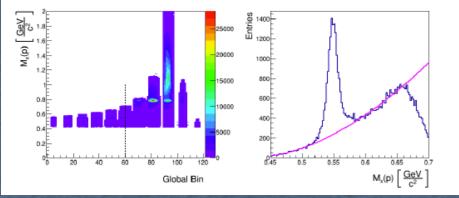
Properties of the η -meson

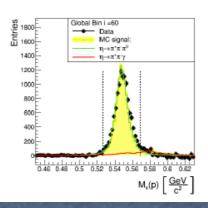
$m_{\eta}~[{ m GeV/c^2}]$	0.5478	
$Γ_η$ [keV]	(1.31 ± 0.05)	
$ar{ au}$ [s]	5 · 10 ⁻¹⁹	
JPC	0-+	

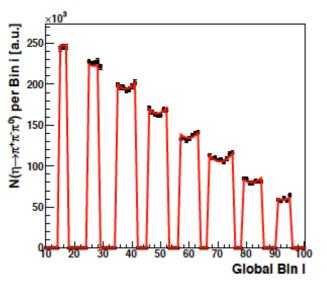
- The η-meson is a C-, P-, G- and CPeigenstate
- All strong and electromagnetic decays are forbidden to first order
- Access to rare decay processes

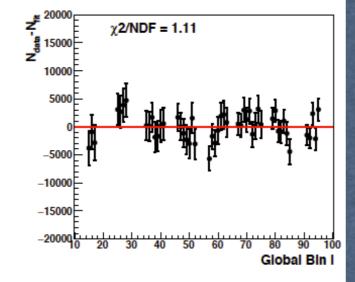

Today:

- 1.) Analysis Status of $\eta \to \pi^+\pi^-\pi^0$
- 2.) Set up Analysis for $\eta^{(\prime)} \to \pi^+\pi^-\gamma$ (Sorry, no update here)
- Parameterise decay width Γ : $\frac{d^2\Gamma}{dXdY} \propto (1 + aY + bY^2 + cX + dX^2 + eXY + fY^3 + gX^2Y + ...)$
- Dalitz Plot Analysis and determination of Q for $\gamma p \to p \eta [\eta \to \pi^+ \pi^- \pi^0]$ with the CLAS G12 data set


- Decay $\eta \to \pi^+\pi^-\pi^0$ is G-violating \Rightarrow Forbidden to first order
- Decay is driven by isospin breaking part of strong interaction
 ⇒ C is conserved
- Decay width: $\Gamma \propto Q^{-4}$ with: $Q^2 = \left(\frac{m_s}{m_d}\right)^2 \times \left[1 \left(\frac{m_u}{m_d}\right)^2\right]^{-1}$
- ⇒ Determine decay width Γ ⇒ Access to quark mass ratio




- a) Measure $\Gamma(\eta \to \pi^+\pi^-\pi^0)$, e.g. via $\frac{\Gamma(\eta \to \pi^+\pi^-\pi^0)}{\Gamma(\eta \to \gamma\gamma)}$
- b) Dalitz Plot Analysis


Background Handling and Determination of $N^0(\eta \to |\pi^+\pi^-\pi^0)$

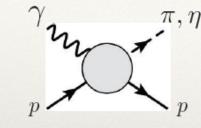
12

Determining Systematic Errors: Procedure

- 1. Do analysis with analysis parameter $p_1, ..., p_N$ (e.g. kinematic fit probability)
 - \Rightarrow Obtain reference data set with result(s): $R \pm \Delta R$
- 2. Redo analysis:
 - a) Vary parameter p_i (e.g. beam energy) within interval $[p_{i1}, p_{ik}]$
 - b) Keep remaining parameters $p_{j\neq i}$ fixed
 - \Rightarrow Obtain sub-data sets $i_1,...,i_k$ with result(s): $R_{im} \pm \Delta R_{im}$, m=1,...,k
- 3. Are sub-data sets $i_1, ..., i_k$ statistically uncorrelated?

Yes: Errors ΔR_{im} are (statistically) uncorrelated and can be treated independently

- No: Errors ΔR_{im} are (statistically) correlated and have to be corrected: $\Delta R_{im} \mapsto \sqrt{|\Delta R^2 \Delta R_{im}^2|}$
- \Rightarrow Fit a straight line to $R_{im} \pm \Delta R_{im}$ and determine error σ_i from that fit
- 4. Repeat steps 1.-3. for remaining parameter

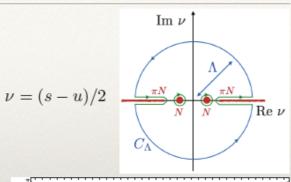

- \Rightarrow Analysis of $\eta \to \pi^+\pi^-\pi^0$:
 - Refined analysis and background fitting procedure (not shown here)
 - Study of reconstruction-related systematics ⇒ Suspicion on influence of fitting procedure itself:
 - i) Fixing Parameters c,e and g to 0
 - ii) Neglecting DP bins < 20 show large impact on parameters b and f \Leftrightarrow Background handling in this region
 - ▶ Asymmetry is not affected by i)/ii) ⇔ Hint for other systematic influences
 - ► Goal: Have Analysis and systematic studies finished until next collaboration meeting
- \Rightarrow Analysis of $\eta^{(\prime)} \to \pi^+ \pi^- \gamma$:
 - ▶ Set up preliminary reconstruction plan
 - lacktriangle Determination of lpha-parameter ongoing

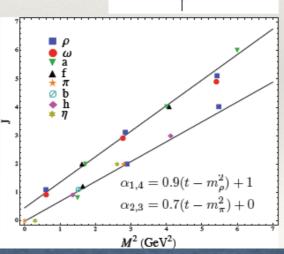
JPAC Report

(Summer'17 Edition)

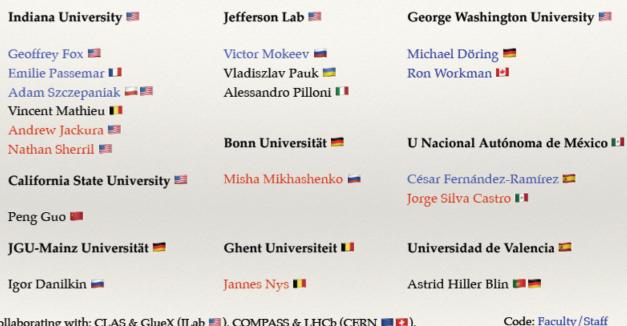
César Fernández-Ramírez Instituto de Ciencias Nucleares Universidad Nacional Autónoma de México

Finite Energy Sum Rules




$$\int_0^{\Lambda} \operatorname{Im} A_i(\nu, t) \nu^k d\nu = \beta_i(t) \frac{\Lambda^{\alpha_i(t) + k}}{\alpha_i(t) + k + 1} + \dots$$

$$S_i(t, k)$$

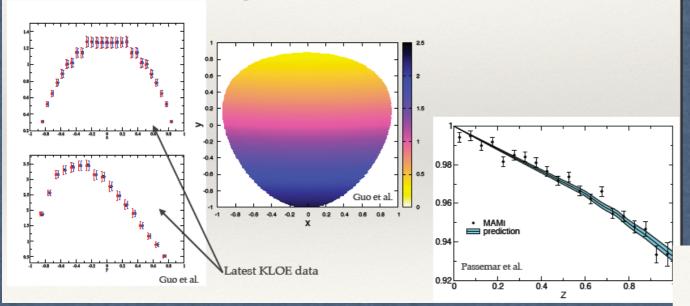

High-energy residue prediction from low-energy data

$$\widehat{\beta}_i(t) = S_i(t, k) \frac{\alpha_i(t) + k + 1}{\Lambda^{\alpha_i(t) + k}}$$
$$= \beta_i(t) + \mathcal{O}(1/\Lambda)$$

Joint Physics Analysis Center (2017)

Collaborating with: CLAS & GlueX (JLab ■), COMPASS & LHCb (CERN ■ □),

MAMI (Mainz ■), BESIII (Beijing ■), KLOE (Frascati □),

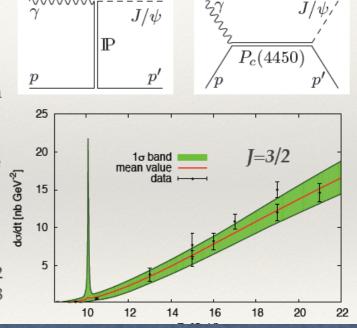

BELLE II (KEK •), BABAR (SLAC ■)

Postdoc

PhD student

$\eta \rightarrow 3\pi$

Two different approaches \Rightarrow model dependencies and systematics under control Guo *et al.* PRD 92 (2015) 054016 , PLB 771 (2017) 497 Colangelo, Lanz, Leutwyler, Passemar, PRL 118 (2017) 022001

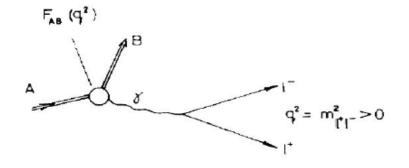

Pentaquark Photoproduction

Model for J/Ψ photoproduction

Pomeron + Resonance

- High-energy dominated by Pomeron exchange
- * Resonance added as a Breit-Wigner
- We assume vector meson dominance (we do not know the em couplings)

Hiller Blin *et al.*, PRD 94 (2016) 034002 F-R, Hiller Blin, Pilloni, arXiv:1703.06928



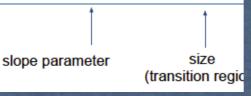
Light Meson Decays

status of LMD group

Susan Schadmand, IKP dron spectroscopy session CLAS collaboration meeting June, 2017

transition form factor

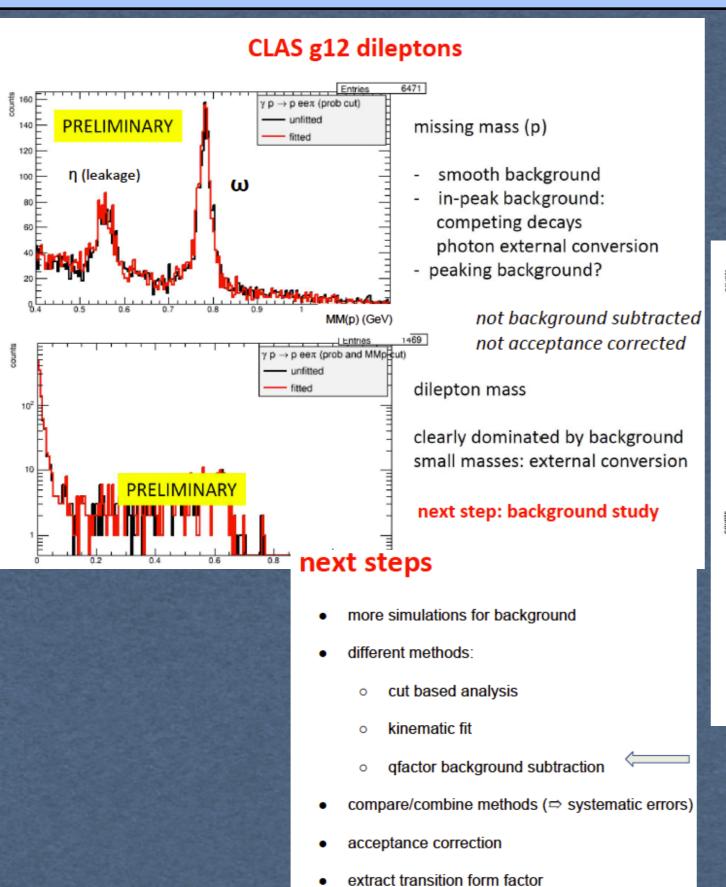
$$\frac{d\Gamma(A \to B \, l^+ l^-)}{dq^2 \cdot \Gamma(A \to B\gamma)} = \left| F_{A \to B}(q^2) \right|^2 \cdot |\text{QED}|$$

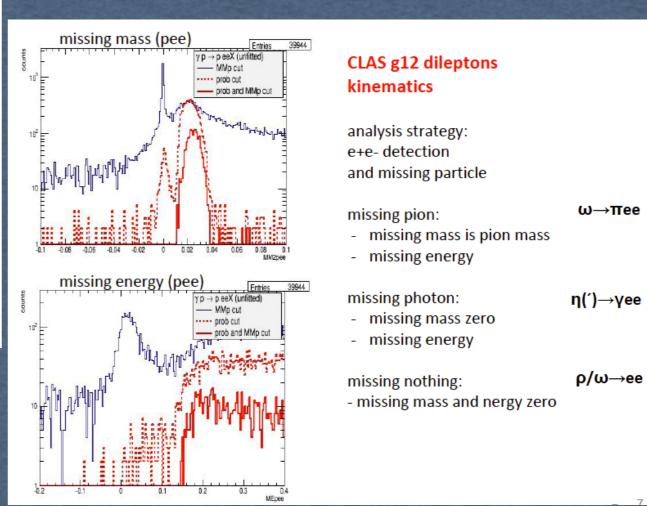

form factor: divide experimental q2 distribution by QED

$$F_{AB}(q^2) = [1 - q^2/\Lambda^2]^{-1}$$
 (single) pole approximation

$$F_{AB}(q^2) \simeq 1 + q^2 [dF_{AB}/dq^2]|_{q^2 \simeq 0} = 1 + q^2 b_{AB} = 1 + \frac{1}{6}q^2 \langle r_{AB}^2 \rangle$$

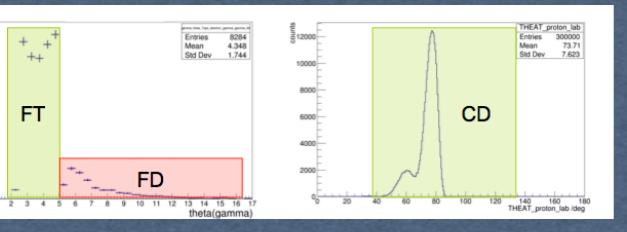

$$\Lambda \simeq m_{\rho} \ (\Lambda^{-2} = b_{\rm AB})$$


'standard' VMD

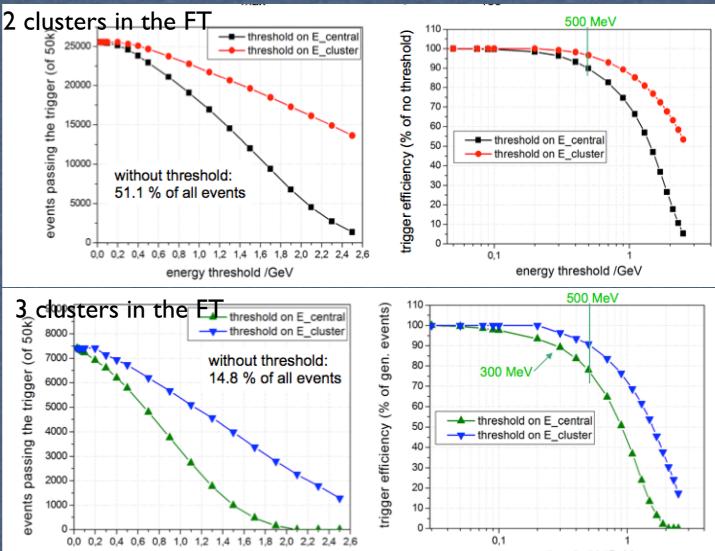


meson decay	physics	people	data	status	publication
$\pi \to \gamma e^+ e^-$	transition form factor, Me+e- (dark photon)	Michael Kunkel	g12	PhD 2014, ODU	pi0 cross section in preparation
$\eta' \to \gamma e^+ e^-$	transition form factor	Michaela Schever	g12	Master 2015, RWTH Aachen	CLAS1
$\eta \to \gamma e^+ e^-$	transition form factor				
$\omega \rightarrow \pi^0 e^+ e^-$	transition form factor	Susan Schadmand	g12	this talk	
$\eta \to \pi^0 e^+ e^-$	C violation				
$\eta' \to \pi^+\pi^-\gamma$	box anomaly upper limit branching ratio	Georgie Mbianda Njencheu	g11	PhD 2017, ODU analy	sis report in preparation
		Daniel Lersch	g12		
$\eta \rightarrow \pi^+\pi^-\gamma$	box anomaly	Torri Roark	gll		
		Daniel Lersch	g12		
$\varrho \rightarrow \pi^{\dagger}\pi^{}\gamma$		Tyler Viducic	g11?		
$\eta, \omega, \phi \rightarrow$ L.G.	Dalitz plot analysis η ω φ	Daniel Lersch, (Diane Schott) Carlos Salgado + , Chris Pederson	g11/g12	DL: see talk this mee	eting
(4- β (* π ⁺ π η dq²	Dalitz plot analysis pi+ pi- correlation	Sudeep Ghosh	g12, (g11)	anal	sis report in preparation

ω-π transition form factor



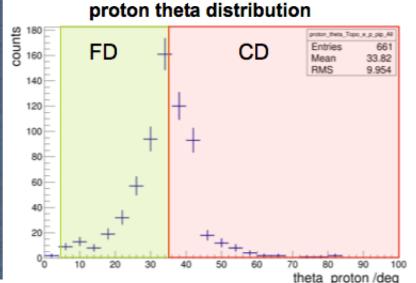
CLAS12 MesonEx trigger studies

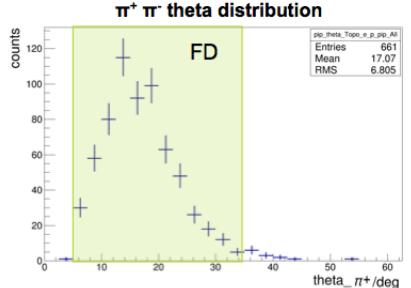

Stefan Diehl

2nd Physics Institute, Justus-Liebig-University Giessen

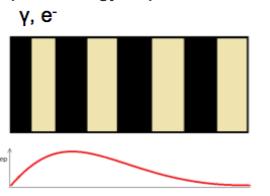
Trigger conditions for e p \rightarrow e 'p π^0

Energy sum of the reconstructed clusters pass trigger if E_{sum} > E_{thr} --- all pass Esum trigger (of 50k) 46000 minimum energy for the e-cluster passing the • e- detected in FT in 98.7 % of the events 0,5 2,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4 2,6 energy threshold /GeV energy threhold /GeV

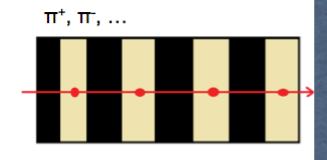



0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4 2,6

energy threshold /GeV


energy threshold /GeV

Trigger conditions for e p \rightarrow e ' p π^+ π^-



Compare energy deposition in different layers of the ECAL

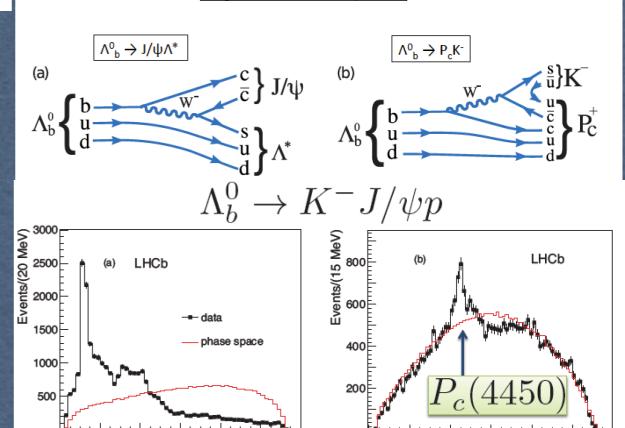
18

- Trigger studies have been performed based on events reconstructed from MC simulations
- Trigger simulation on this level is nicely working
- A cut on the number of clusters in the FT with a relatively low threshold for each cluster is an effective trigger for e p → e ' p π⁰
- Reduction of the trigger cluster definition to the hit level will be investigated
- Next step: Move to a time based trigger simulation based on the gemc output (directly implementable to the FPGA)

Near threshold J/ψ production and study of the LHCb pentaquarks with CLAS12

Valery Kubarovsky

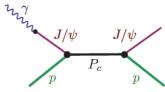
Approved J/Ψ Photoproduction Experiments at Jlab


- PR12-12-001: Hall-B, untagged technique
- PR12-12-006: Hall-A
- PR12-16-007: Hall-C (Search for the LHCb pentaquarks)

New proposal – JLAB PAC45

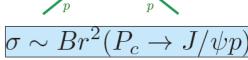
- Extends measurements of approved CLAS12 experiment E12-12-001 by including $J/\psi \rightarrow \mu^+\mu^-$ decay mode
- Will study pentaquarks with hidden charm using tagged (E12-12-005, MesonX) and untagged (E12-12-001) photoproduction with CLAS12

LHCb: Background and Signal


$$\Lambda_b^0 \to K^- J/\psi p$$

Pentaquark photoproduction

m_{Kp} [GeV]


 It was shown that the vector dominance model works for the s-channel photoproduction of hiddencharm pentaguark.

$$\sigma(W)|=\frac{2J+1}{4}\frac{4\pi}{k^2}\frac{\Gamma^2/4}{(W-M_c)^2+\Gamma^2/4}\,Br(P_c\to\gamma+p)\,Br(P_c\to J/\psi+p)$$

$$\Gamma(P_e \rightarrow \gamma + p) = \frac{3\Gamma_{ee}(J/\psi)}{\alpha M(J/\psi)} \sum_L f_L \left(\frac{k}{p}\right)^{2L+1} \Gamma_L(P_e \rightarrow J/\psi + p)$$

$$1.5 \times 10^{-30} \text{ cm}^2 < \frac{\sigma_{max}[\gamma + p \rightarrow P_c(4380) \rightarrow J/\psi + p]}{Br^2[P_c(4380) \rightarrow J/\psi + p]} < 47 \times 10^{-30} \text{ cr}$$

 $1.2 \times 10^{-29} \text{ cm}^2 < \frac{\sigma_{max}[\gamma + p \rightarrow P_c(4450) \rightarrow J/\psi + p]}{2} < 36 \times 10^{-29} \text{ cr}$

$$\sigma(W) \sim \frac{\Gamma^2/4 \cdot Br^2(P_c \to J/\psi + p)}{(W - M_c)^2 + \Gamma^2/4}$$

 m_{J/ψ_D} [GeV]

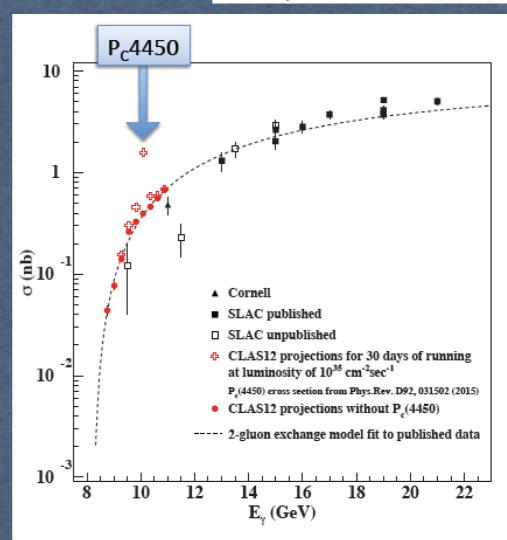
CLAS12 performance – untagged photoproduction

$$ep \to (e')p'l^+l^-; l = e, \mu$$

- Recoil proton and decay leptons are detected
- Kinematics of the scattered electron will be reconstructed in the missing momentum analysis requires missing transvers momentum to be ~0
- Acceptance covers the mass range of charmed pentaquarks

CLAS12 performance - tagged photoproduction

- About x10 lower photon flux, but ...
- Multiple final states to measure J/ψ photoproduction
- · Excellent mass resolutions:
 - J/ ψ as sharp peak either in the invariant mass of decay leptons ($\Delta M{\sim}15$ MeV) or in the electron-proton missing mass ($\Delta M{\sim}7$ MeV)
 - Pentaquarks will be reconstructed in the missing mass analysis of the scattered electron (W-distribution) (ΔM~5 MeV)


$$ep \rightarrow e'p'l^{+(-)}, \ l^{-(+)}; \ l = e, \mu$$
Detection efficiency ~28%

$$ep \rightarrow e'l^+l^-(p'); \ l=e,\mu$$
Detection efficiency ~18%

- From the two gluon exchange prediction for cross section, we expect total of 45 J/ψ detected per day in the whole energy rage
- Expected total number of P_c4450 pentaquarks 98 per day

Compared to -

- The Hall-C E12-16-007 with the same cross section formalism will detect 70 pentaguarks per day
- The Hall-A experiment E12-12-006 with future SoLID detector expects ~42 J/ψ per day
- With current luminosity Hall-D Gluex experiments expects 5-10 J/ ψ per day

