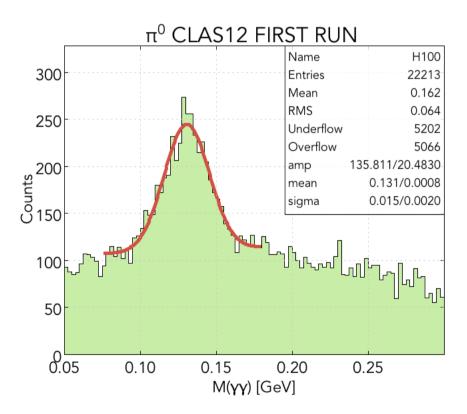
CLAS12 Software Organization and Documentation

Nathan Harrison Jefferson Lab


CLAS Collaboration Meeting June 13, 2017 Jefferson Lab

Outline

- Current release
- Online software
- Simulations
- Common tools
- Reconstruction
- Data processing
- Summary

Current Release

- GEMC 4a.1.0
- COATJAVA 4a.6.0

2-photon invariant mass from KPP data (coatjava 4a.0.0)

Online Software

CEBAF Online Data Acquisition (CODA)

Expert: Sergey Boyarinov

See talk later today (14:25)

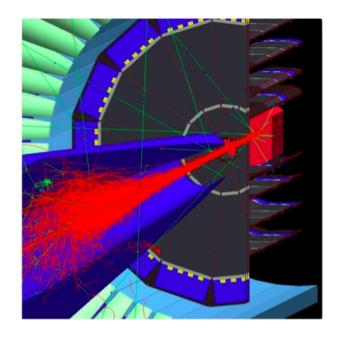
* Great performance during KPP

Slow Controls

Expert: Nathan Baltzell

See talk later today (14:10)

Simulations

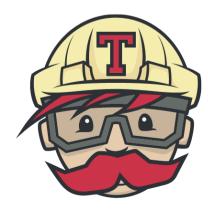

GEant4 Monte Carlo (GEMC)

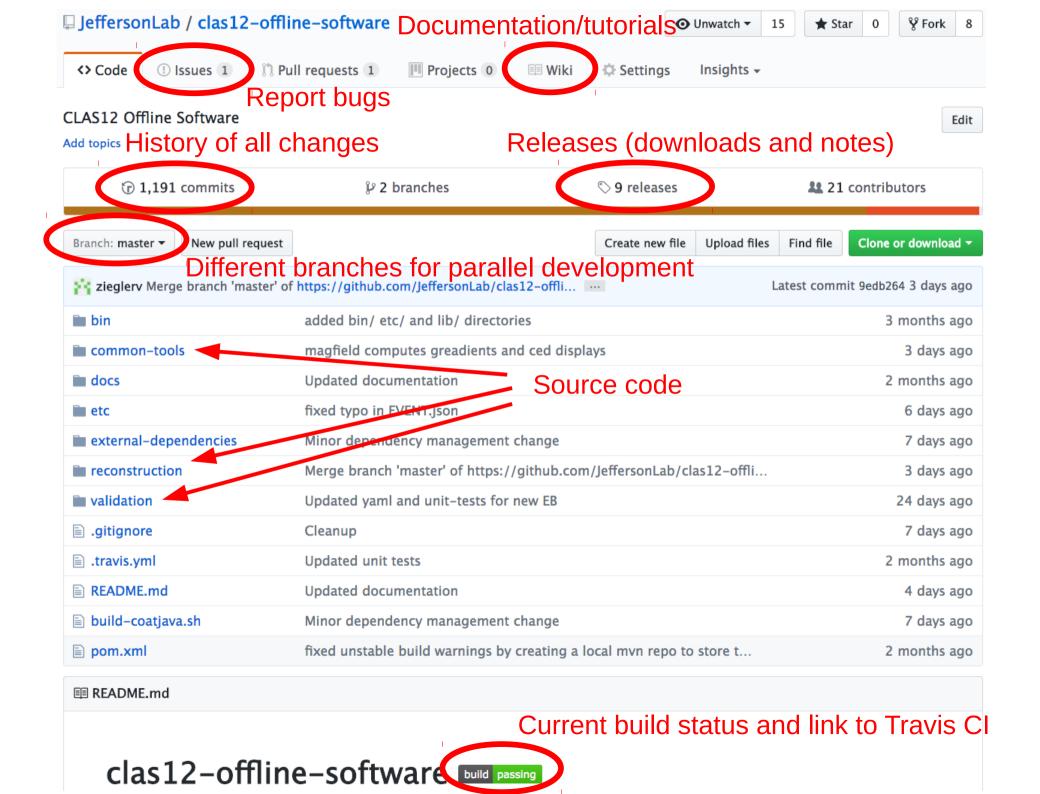
Expert: Maurizio Ungaro

Documentation: gemc.jlab.org

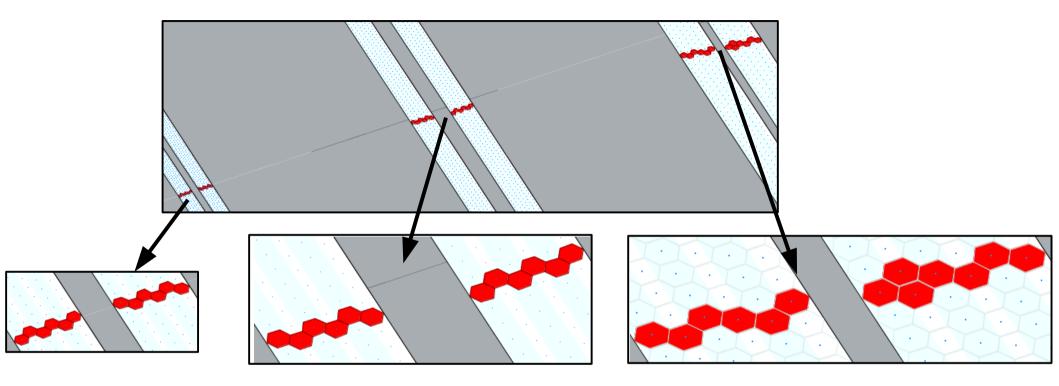
Source code and release tags: github.com/gemc

See talk later today (14:40)


* There will be a hands-on GEMC demo during the CLAS12 Software Tutorial (Friday at 14:00)


- Geometry, calibration, and run conditions databases CCDB/RCDB
 - Hall-D development
 - Hall-B contact: Harut Avakian
 - Contains run number and variation dependence
 - sglite versions available
- CLAS Offline Analysis Tools (COATJAVA)
- * Great performance during KPP
- Allows for fast application development
- Written in Java, version control by git
- Contains I/O tools, plotting/fitting, geometry, and reco/calibration engines
- Built with Maven build system
- Unit tests and validation done by Travis CI
- Documentation and downloads: https://github.com/JeffersonLab/clas12-offline-software

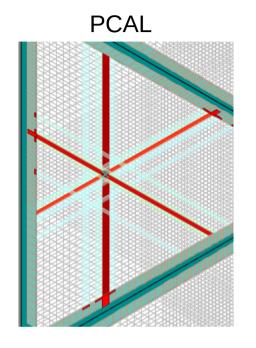
Travis CI Page

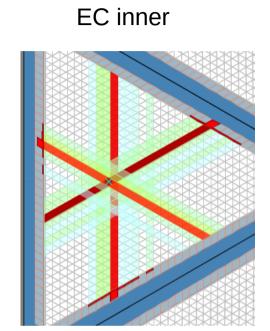

JeffersonLab / clas12-offline-software © build passing

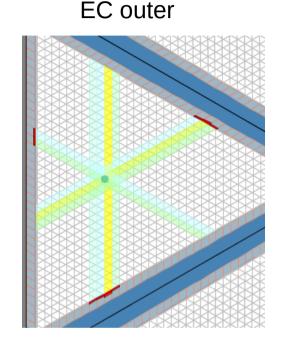
Current Branches Build History Pull Requests					
✓ 4a.6.0 Merge branch 'master' of https://github.com/ ○ Veronique Ziegler	-0- #222 passed ☑ 9edb264	 4 min 12 sec 3 days ago			
master Merge branch 'master' of https://github.com/ Veronique Ziegler	-0- #221 passed ☐ 9edb264	9 min 50 sec3 days ago			
✓ master magfield computes greadients and ced displa ② David Heddle	-0- #220 passed ☑ 850d1ac	© 8 min 31 sec 3 days ago			
✓ master removed suspect uberfast sin and cosine ② David Heddle	-0- #219 passed ☑ e0e4157	 ○ 3 min 52 sec □ 3 days ago 			
 ! master David Heddle Bad ass testing of the mag field. Confident properties	- ○- #217 errored <a>☑ be6c519	1 min 7 sec 4 days ago			
✓ master Updated documentation ■ Nathan Harrison	-0- #216 passed ☑ 4584462	9 min 46 sec4 days ago			

DC Unit Test

* single simulated electron event with p=2.5 GeV, θ =25 deg, φ =0, torus=-1, solenoid=0


Unit test checks the following for HBT and TBT:

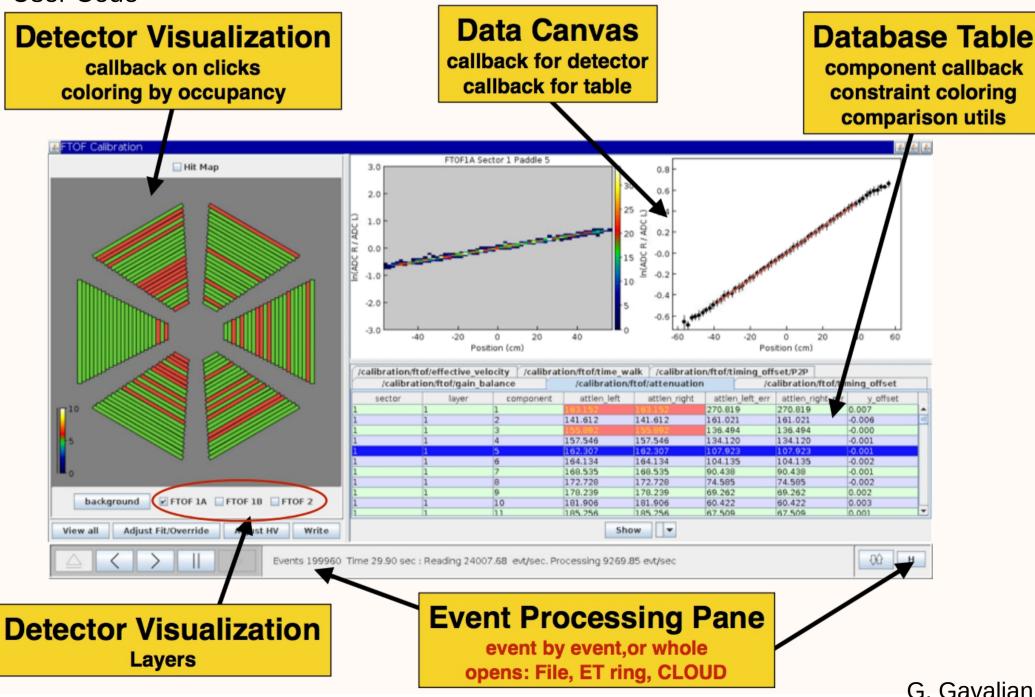

- has tracking bank
- tracking bank has 1 row
- the one track has charge -1
- px, py, pz are close to the true values


* These tests are run automatically by Travis CI after every build; returns a failure if tests don't pass

EC Unit Test

* single simulated photon event with p=2.5 GeV, θ =25 deg, φ =0, torus=-1, solenoid=0

Unit test checks the following using ECEngine and EBEngine:

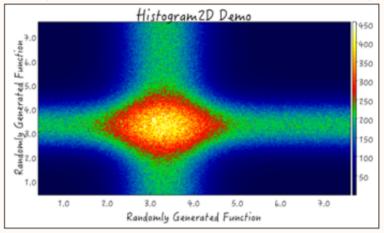

- has RECHB::Particle bank
- particle bank has 1 row w/ correct pid, px, py, pz
- has RECHB::Detector bank
- detector bank has 3 rows w/ correct detector/sector/layer/component

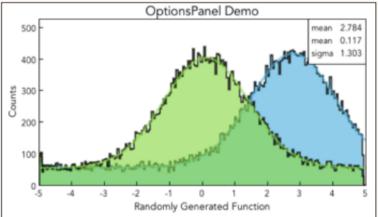
* These tests are run automatically by Travis CI after every build; returns a failure if tests don't pass

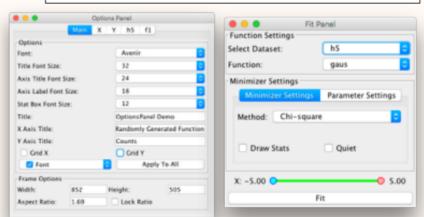
Software Structure

<u>,</u>					
IO	GEOMETRY	DATABASES	PLOTTING	RECONSTRUCTION	
EVIO Utils	Geometry Primitives	CCDB Database MySQL, SQLite	Histograms Package	Interfaced Engines	
HIPO Data Format	Detector Definitions	Indexed Reading Detector Constatns	Data Persistence	Plugin Based Work Flow	
RAW Data Decoder	Detector Visualization	Constants Visualization	Tuple Trees Visual Analyzer	DB auto resolve Remote, Local	
ROOT convertor	CAD (STL) import	Automated Constants Caching	Network transfer Serialization	CLARA	
USER CODE CALIBRATION MONITORING					

User Code

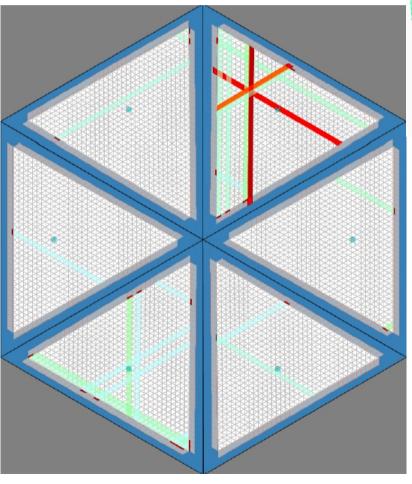

Data Visualization Package:

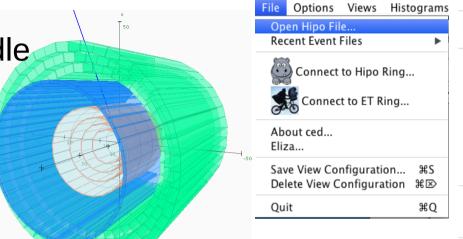

- pure Java implementation of plotting
- histograms 1D, 2D and GraphErrors
- functions and MINUIT fitting
- interactive styles and property editors
- tuple tree implementation
- saves data to HIPO files (compressed)
- data serialization for network transfer


Studio UI

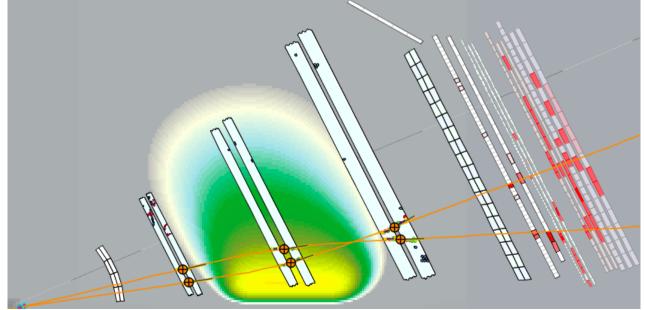
- · analysis studio for visual data analysis
- interactive fitting, custom function builder
- interactive data set comparison algorithms
- ASCII tuple import/export
- · serialized data export with analysis procedure

Development: G. Gavalian, W. Phelps




G. Gavalian

CLAS12 Event Display (ced)


Expert: Dave Heddle

Download: jlab.org/~heddle

Reconstruction

- Reconstruction code is written in Java and version controlled with git
- Reconstruction package comes with the COATJAVA download and includes:
 - Descriptors for data banks
 - Local copy of calibration database (sqlite)
 - Magnetic map definitions and swimmers
 - YAML file specifying different run configurations
- Can be run multi-threaded within the CLARA framework
- Many talks throughout the rest of today on the status of reconstruction for each detector sub-system

Data Processing

- CLAS12 Reconstruction and Analysis framework (CLARA)
 - Base on service oriented architecture
 - Services can be written in Java, C++, and Python
 - Efficiently runs CLAS12 reconstruction code multi-threaded
 - Expert: Vardan Gyurjyan
 - Documentation: claraweb.jlab.org

* There will be a hands-on demo of running reconstruction with CLARA during the CLAS12 Software Tutorial (Friday at 14:00)

Summary

- CLAS12 software has reached a high level of maturity and performed very well during the KPP run
- More in-depth talks on each software component will take place throughout the rest of today
- A 2-hour hands-on software tutorial will take place on Friday at 14:00 input and requests are welcome!