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Supervised machine learning is a broad and evolving field. The most common 
usage in physics is training algorithms to classify data as signal or 
background by studying existing labeled (possibly MC) data, though usage is 
expanding to other areas.

Machine Learning

teacher student

There are too many categories of algorithms to even attempt to list them here.  
In physics, most usage is either a boosted decision tree (BDT) or artificial 
neural network (ANN) — so I’ll briefly describe these. A simple way to think 
about these is as dimensional-reduction algorithms. The try and learn the 
optimal way to reduce N-D into 1-D (humans do the same thing with the 
likelihood ratio). 2



Start with a labeled training data sample. These may be obtained from 
simulation, data sidebands, control modes, etc.

Decision Trees

[etc]

Repeatedly split the data to maximize some FOM trying to produce pure B or 
S “leaves”.  Stop when can’t improve FOM, or when reaching some stopping 
criteria (a subset of algorithm-specific hyper-parameters).
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Boosting is a family of methods that produce a series of “weak” classifiers that 
when combined are extremely powerful.

Boosting

training sample

weighted sample

weighted sample

weighted sample

[...]

DT

DT

DT

DT

BDT

One common approach: Each DT in the series “boosts” the weight of events 
based on trying to minimize some loss function. The end result is just a large 
set of if-type statements leading to a return (many hyper-parameters).
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Neural Networks
ANNs send data from input neurons via synapses to a hidden layer (or 
layers) of neurons, and then to the output neurons via more synapses.

Learning is typically done via back-propagation of the cost-function gradient 
w.r.t. the NN parameters — the end result is just a function.

ANN
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Want to avoid learning specifics of the training data 
set (overtraining). Same idea as overfitting, this 
results in a less predictive algorithm.

It is easy to spot severe overtraining by comparing 
the performance on the training data set to an 
independent (validation/testing) data set (cross 
validation).

In short, most modern algorithms are pretty good at 
avoiding this provided “good” hyper-parameters are 
chosen (these can be problem specific however), 
and sufficient training data exists.  

An enlightened way of optimizing machine learning 
hyper-parameters is Bayesian Optimization (e.g. 
the spearmint package is a very good option).

Overtraining
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Tools
Physicists used to mostly use TMVA in ROOT; however, the rest of the world 
is using the python scikit-learn package (sklearn for short), Keras, etc., and 
our field is also moving this way.

Basics: Adaboost DT or Multilayer Perceptron NN (MLP); State-of-the-Art: 
XGBoost DT or Deep NN (e.g. Tensorflow).



❝

❞

In theory there’s no difference 
between theory and practice. In 
practice there is.

Yogi Berra



Fake-Track Killer

ML for fake track probability
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Fake track probability based on TMVA NN (CE estimator), most important features are hit 
multiplicities and partial chi2 information in different tracking subdetectors. Main 
timing cost network evaluation, custom activation function for speed. Extensive use of 
code profiling and autovectorization to optimize the .C output of TMVA for speed.

De Cian et al. 
LHCb-PUB-2017-011

Fake-track-killing neural network, most important features are hit multiplicities 
and track-segment chi2 values from tracking subsystems. 

Run in the trigger on all tracks, so must be super fast. Use of custom 
activation function and highly-optimized C++ implementation (ROOT’s TMVA 
package provides stand-alone C++ code to run the trained algorithm). 

LHCb-PUB-2017-011
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CMS actually published both cut-based and BDT-based Higgs exclusions for 
the WW decay mode — so we can see directly what is gained:
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Large regions of possibly m(H) values are excluded by the BDT-based 
analysis that are NOT excluded by the cuts — using the same data!

Higgs to WW @ CMS
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Charged PID

Charged PID: determining 
whether a track originates 
from an e, μ, π, K, p, or fake.

Info from the tracking, 
calorimeter, RICH, and 
muon systems all play an 
important role here—and 
are correlated.
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PID NNs
Single-hidden-layer NN trained on 32 features from all subsystems. Each is 
trained to identify a specific type of particle (or fake track). 

Typically get a factor of 3x less pion contamination in a muon sample than 
using the CombDLL approach — 10x less in a dimuon sample!
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Figure 42: Electron identification performance using the �logL
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(e� ⇡) variable, as measured
in 8TeV collision data, using a tag and probe technique with electrons from the decay B

± !
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�)K±. Left, pion misidentication rate versus electron identification probability when
the cut value is varied. Right, electron identification e�ciency and pion misidentification rate as
a function of track momentum, for two di↵erent cuts on �logL
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Figure 43: Background misidentification rates versus muon (left) and proton (right) identification
e�ciency, as measured in the ⌃+ ! pµ

+
µ

� decay study. The variables �logL(X�⇡) (black) and
ProbNN (red), the probability value for each particle hypothesis, are compared for 5� 10GeV/c
muons and 5 � 50GeV/c protons, using data sidebands for backgrounds and Monte Carlo
simulation for the signal.

If the tracks identified as muons are also required to satisfy a selection using the combined
PID information (�logL

comb

(K � ⇡) < 10 and �logL
comb

(µ� ⇡) > �5), the B0
(s) ! h

+
h

�

misidentification probability is reduced by a factor of ⇠ 6, whilst only ⇠ 3% of the
B

s

! µ

+
µ

� signal is lost.
The possible improvement of the multivariate approach with respect to the simple log

likelihood may also be illustrated by the ongoing search for the flavour-changing neutral
current decay ⌃+ ! pµ

+
µ

�. In Figure 43 the misidentification rates versus e�ciency curves

57

Currently exploring state-of-the-art: XGBoost ~ Deep NN ~ 50% less BKGD 
than basic BDT or ANN, which again give 2-3x less BKGD than DLLs.
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ML Jet Tagging

Put 10 features into two BDTs: one for b,c vs light, and another for b vs c. No 
feature can fully separate types, but their correlations (largely) can.

Could cut on BDT responses to obtain high-purity b-jet or c-jet samples. 
Alternatively, fit 2-D BDT distribution to extract the b-jet and c-jet yields.
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Figure 1: SV-tagger algorithm BDT(b|c) versus BDT(bc|udsg) distributions obtained from
simulation for (left) b, (middle) c and (right) light-parton jets.

3.3 Performance in simulation

Figure 1 shows the SV-tagger BDT distributions obtained from simulated W+jet events
for each jet type. The distributions in the two-dimensional BDT plane of SV-tagged b, c,
and light-parton jets are clearly distinguishable. The full two-dimensional distribution
is fitted in data to determine the jet flavor content. However, to aid in comparison to
other jet-tagging algorithms, a requirement of BDT(bc|udsg) > 0.2 is applied to display
the performance obtained from simulated events in Fig. 2. This requirement is about 90%
e�cient on SV-tagged (b, c) jets and highly suppresses light-parton jets. The (b, c)-jet
e�ciencies are nearly uniform for jet p

T

> 20GeV and for 2.2 < ⌘ < 4.2, but are lower for
low-p

T

jets and for jets near the edges of the detector. The misidentification probability of
light-parton jets is less than 0.1% for low-p

T

jets and increases to about 1% at 100GeV.
Figure 3 shows the (b, c)-jet e�ciencies versus the mistag probability of light-parton jets
obtained by increasing the BDT(bc|udsg) cut.

For the TOPO algorithm, in the trigger a BDT requirement is always applied; the
requirement is looser when the SV contains a muon. In the LHCb measurement of the
charge asymmetry in bb̄ production [23], this same looser BDT requirement was applied to
tag a second jet in the event. Figure 2 shows the performance of the TOPO algorithm,
obtained from simulated events, for both the nominal and loose BDT requirements. The
nominal trigger BDT requirement strongly suppresses c and light-parton jets, with the
misidentification probability of light-parton jets being 0.01% for low-p

T

jets. Such a strong
suppression is required during online running due to output rate limitations.

The jet-tagging performance is measured in simulated events with one pp collision and
two or more pp collisions and found to be consistent. The tagging performance is also
studied in simulation using di↵erent event types, e.g. top-quark and QCD di-jet events,
with only small changes in the tagging e�ciencies and BDT templates observed for (b, c)
jets. The mistag probability of light-parton jets is found to be higher for high-p

T

jets in
events that also contain (b, c) jets. This is discussed in detail in Sec. 5.

5

JINST 10 (2015) P06013
LHCb-PAPER-2015-016

LHCb simulation: each distribution normalized to one; 70%, 25%, 1% of b, c, light jets are tagged.

Looked at doing a single 3-class algorithm but that doesn’t seem to help here (shown to work better in other applications).
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Figure 6: From a b-jet and c-jet enriched data sample of Ref. [11]: (left) SV-tagger BDT
responses observed in data (annotation added here to show roughly where jets of each type
are found); (middle) projection onto the x-axis; and (right) projection onto the y-axis. The
BDT templates shown here were obtained from simulation. This and similar data samples
were used to calibrate the BDT responses for use in physics analyses.

simulation was known to model heavy-flavor hadron decays well, whereas the description of
jet properties had not yet been fully validated using data. Figure 6 shows that despite this
simplified approach, the separation between b-jets, c-jets and light-parton jets is excellent.

For Run 2, we plan to investigate using additional information to improve the perfor-
mance. We also plan to approach this as a true 3-class problem, rather than two 2-class
ones. As part of the jet-tagging development, we will update our bb̄ charge asymmetry mea-
surement [5] and make the first such measurement for cc̄. Recall that Ref. [37] suggested
that �(cc̄)/�(bb̄) provides a good standard candle to use in c-tagging calibration; therefore,
it makes sense to add these dijet measurements into the tagging-development project.

6.2.2 Intrinsic Strangeness and Charm

Whether there is intrinsic (non-perturbative) charm (IC) content in the proton at the ⇡ 1%
level is an open (and hotly debated) question. There is theoretical interest in the role that
non-perturbative dynamics play in the nucleon sea. Furthermore, the presence of IC in
the proton would a↵ect the production cross sections of many processes at the LHC either
directly, by scattering o↵ of a large-x c or c̄; or indirectly, since altering the charm PDF
would a↵ect the gluon PDF via the momentum sum rule. Ref. [44] considers two models
where the IC is valence-like (BHPS1, BHPS2) and two where it is sea-like (SEA1, SEA2).
LHCb has direct sensitivity to IC by measuring Z + c production, which can proceed via
gc! Zc. We performed a preliminary study of how these IC models a↵ect Z + c production
at LHCb. Figure 7 shows the relative increase in Z +c production when IC is included in the
proton. These valence-like models will be easily distinguishable in Run 2 at LHCb, while the
sea-like models may be distinguishable in Run 3. We propose to perform this measurement
using our c-jet tagging algorithm.

Intrinsic strangeness in the proton is well established. The s and s̄ PDFs are typically
assumed to be identical, but they need not be. Figure 7 shows the shift in the W + c
charge asymmetry that LHCb would observe for the charge-asymmetric strangeness PDFs
from Ref. [45] (some of these models may now be ruled out; the point here, however, is that
observably large asymmetries may occur in W + c production). Phil and I measured W + c

Performance validated & calibrated using large heavy-flavor-enriched jet data 
samples (2-D data validation much easier than 10-D!). Some analyses cut on 
these BDT responses, others fit the 2-D distributions to extract b,c,l yields.

2-D BDT plane (nearly) optimally utilizes 10-D info to ID b, c, and light jets.

JINST 10 (2015) P06013
LHCb-PAPER-2015-016

ML Jet Tagging



1.5 Branching fraction analysis results
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Figure 17: Mass distributions of the selected B0

(s)

! µ+µ� candidates (black dots) in bins of

BDT. The result of the fit is overlaid (blue solid line) and the di↵erent components are detailed:
B0

s

! µ+µ� (red long dashed), B0 ! µ+µ� (green medium dashed), combinatorial background
(blue short dashed), B0

(s)

! h+h0� (magenta dotted), B0 ! ⇡�µ+⌫
µ

and B0

s

! K�µ+⌫
µ

(black

dot-dashed), B0(+) ! ⇡0(+)µ+µ� (cyan dot-dashed), B+

c

! J/ µ+⌫
µ

(orange dot-dashed) and
⇤0

b

! pµ�⌫̄
µ

(violet dot-dashed).
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Continuing to move beyond just 
cutting on response … Calibrate 
BDT to have uniform response on 
Bs→μμ signal, bin data in BDT 
response and analyze all dimuon 
mass distributions simultaneously.  

Constraints added to the likelihood 
for relationships between yields 
and shapes of the var ious 
components from bin to bin.

Can enforce no mass dependence 
if desired: see J. Stevens, MW 
[1305.7248] ; Rogozhnikova, 
Bukva, Gligorov, Ustyuzhanin, MW 
[1410.4140].

ML in Analysis
LHCb-PAPER-2017-001

16
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Regression
ML is also now being used for regression.  For example, CMS has moved to 
ML-based jet-energy corrections (e.g., for Higgs to bb).

CMS, PRD 92 (2015) 032008



Details
•We typically train our ML algorithms on MC, then characterize their performance using 
data control samples (same way we characterize our hardware). In principle, data samples 
could also be used in the training, but then one would need to deal with BKGD in those 
samples (this is not hard to do using event weights). N.b., make sure to not confuse non-
optimal with wrong or the inverse.

•Dimensional reduction achieved by ML makes it possible to maximize performance 
without complicating data-driven validation. There are many standard candles at the LHC 
to use for data-driven validation — and also at JLab (we’re doing this now for GlueX).

•As an aside, systematics tend to scale with inefficiency, so a highly-performant black box 
often incurs a smaller systematic than a simple, less performant algorithm — and also is 
easier to deal with than hardware (of course there are exceptions).

•Bottom line: We use ML because it enables great science. It greatly improves 
performance in many areas, even converting some measurements from infeasible to 
simple & precise. The LHCb trigger is even mostly ML-based, and has been since the start 
of 2011 data taking (see V.Gligorov, MW, JINST 8 (2012) P02013).

18
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Bayesian Optimization
Bayesian optimization refers to a family of methods that do global optimization 
of black-box functions (no derivatives required).

Start from prior for objective function, treat evaluations as data and produce a 
posterior used to determine the next point to sample. 
See https://github.com/HIPS/Spearmint for an excellent package in python. Example app: Ilten, MW, Yang, Monte Carlo 
tuning using Bayesian Optimization, [arxiv:1610.08328], with fully working code on GitHub here: https://github.com/
yunjie-yang/TuneMC (could also be used for data calibration, or any black-box problem).

https://github.com/HIPS/Spearmint
https://github.com/yunjie-yang/TuneMC
https://github.com/yunjie-yang/TuneMC
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ML & GoF
Since ML algorithms learn dimensional reduction, they can also be used to do goodness of 
fit in high dimensions. This is simple: train a ML algorithm using the data and an MC 
sample generated from the fit PDF, produce an unbiased 1-D ML response distribution for 
each data type, then do a 1-D GoF test (e.g. chisquare) on these 1-D distributions (simple).

The ML learns an approximation of the mass here. In this toy example, the mass (which is 
a weird 8-D manifold) is optimal. Knowing that—and using it—we can beat the machine 
(Whiteson et al showed Deep Learning can really learn things like the mass and other 
human-designed features).

Figure 10. Particle-decay problem: Power of each method versus relative signal component size. The
marker scheme is the same as Figs. 5 and 9, with an additional red c marker added that denotes performing
the c2 test on the one-dimensional invariant-mass distribution.

5. Summary

Multivariate goodness-of-fit and two-sample tests are important components of many nuclear and
particle physics analyses; however, the tests commonly used in such analyses are only powerful
when the dimensionality is small. Machine learning classifiers are powerful tools capable of re-
ducing highly multivariate problems into univariate ones, on which commonly used tests such as
c2 or Kolmogorov-Smirnov may be applied. We explored applying both traditional and machine-
learning-based tests to several example problems, and studied how the power depends on dimen-
sionality. For up to about three dimensions, the power of the adaptive-binned c2 test is comparable
to that of ML-based tests; however, for higher dimensionality the ML-based approach is far supe-
rior to the c2 test.

A caveat to the previous statement is that if some information about the underlying model is
known, it may be possible to construct features that reduce the effective dimensionality of the prob-
lem. Indeed, such human-led feature design is common in physics analyses, e.g., when studying
particle decays the invariant mass is used to reduce all of the kinematic information into a single
feature. In such cases, the problem may effectively be a low-dimensional one and the adaptive-
binned c2 is a powerful option. When one or two features cannot be designed to fully capture all of
the relevant information — which is likely the case when detector-response features are included
in the problem — ML-based tests are expected to be more powerful than traditional ones. We
encourage the community to investigate adopting this approach to goodness-of-fit and two-sample
testing for problems where the dimensionality is large and cannot be reduced without significant
loss of information.

Acknowledgments

We thank Kyle Cranmer for helpful feedback. This work was supported by DOE grants DE-
SC0010497 and DE-FG02-94ER40818.
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Figure 3. Gaussian example problem: adaptive-binned distributions (flattened into one dimension) for ex-
ample data sets sampled from f1 and f2 for (left) d = 2, (middle) d = 6, and (right) d = 10.

Figure 4. Gaussian example problem: ML response distributions for example data sets sampled from f1 and
f2 for (left) d = 2, (middle) d = 6, and (right) d = 10.

Figure 5. Gaussian example problem: Power of each method versus dimensionality d.
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Weisser, MW [1612.07186]
N-D Gaussian (5% width change) 2-body decay using 4-vectors (not mass)



Tools, etc.
•ML algorithms in HEP used to be mostly ROOT’s TMVA , but are now migrating more and 
more to scikit-learn, Keras, etc.; i.e., we are moving away from physics-specific software 
and towards the tools used by the wider ML community. Hyper-parameter tuning using 
spearmint, hyperopt, etc. (see also Ilten, MW, Yang [1610.08328]).

•Custom loss functions, e.g., response is de-correlated from some set of features 
(Stevens, MW [1305.7248]; Rogozhnikova, Bukva, Gligorov, Ustyuzhanin, MW 
[1410.4140]).  Already used in several papers (e.g. LHCb, PRL 115 (2015) 161802), and 
currently being used in many papers to appear soon.

•Many useful tools provided in the HEP-ML package pypi.python.org/pypi/hep_ml/0.2.0, 
which is basically a wrapper around sklearn, and in REP https://github.com/yandex/rep 
(both produced by our colleagues at Yandex).

•N.b., beware of non-general optimizations in some algorithms (e.g. CNNs), i.e. make sure 
to use the right tool for your job. 

•Attend the IML meetings (virtually) https://iml.web.cern.ch to learn about what other 
experiments are doing. Send your students/post-docs to the HEP-ML school, etc.

21

http://pypi.python.org/pypi/hep_ml/0.2.0
https://github.com/yandex/rep
https://iml.web.cern.ch




Summary
•Machine learning algorithms are now commonplace in HEP analyses. Open-
source tools are now very good and getting better daily.

•ML algorithms exploit high-dimensional correlations to improve on cut-based 
selections (can also view them as dimensional-reduction methods). Even 
basic algorithms tend to give big improvements, and state-of-the-art 
algorithms are now easy for novices to use.

•It’s vital that such algorithms can be validated/calibrated in a data-driven 
approach—and not just because your more senior colleagues don’t like them!

•Trust me, this is all easier to use than you think. I will (hopefully) prove this 
to you after lunch. The real work is in obtaining/creating good training 
samples, and in validating the performance in a data-driven way. Everything 
else is really trivial now, which means physicists can spend ~100% of their 
time on systematics instead of designing selections (as it should be).

•Near future: Deep learning, ML-based reconstruction, ML-based 
compression, …
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LHCb Detector

JINST 3 (2008) S08005
Int.J.Mod.Phys. A 30(2015) 1530022

LHCb is a forward Spectrometer (2 < η < 5)
(roughly 1-15o)



26

Real-Time Processing
Simple feature-bu i ld ing in custom 
electronics (e.g. FPGAs) required to reduce 
the data volume to a transferable rate.

TB/s
(post zero suppression)

50 GB/s

LHCb will move to a triggerless-readout system for 
LHC Run 3 (2021-2023), and process 5 TB/s in real 
time on the CPU farm.

JINST 8 (2013) P04022

Online computing farm 
processes 250 PB / year, 
can only persist 1% of this.
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Real-Time Processing (Run 2)

Real-time reconstruction for 
all charged particles with pT 
> 0.5 GeV (25k cores).

Data buffered on 10 PB 
disk while alignment/

calibration done.

Full real-time reconstruction 
for all particles available to 
select events.

50 GB/s

8 GB/s

5 PB/year (mix of full events & ones 
where only high-level info kept)

Precision measurements benefit greatly 
from using the final (best) reconstruction 
in the online event selection—need real-
time calibration!

Final event selection done with access to 
best-quality data (mostly done during 
down time between fills), removing the 
need (but perhaps not the desire) to 
retain the ability to re-reconstruct the data 
offline.

FPGA-based hardware

1 TB/s 40 MHz

1 MHz

100 kHz
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Real-Time Processing (Run 2)

Real-time reconstruction for 
all charged particles with pT 
> 0.5 GeV (25k cores).

Data buffered on 10 PB 
disk while alignment/

calibration done.

Full real-time reconstruction 
for all particles available to 
select events.

50 GB/s

8 GB/s

5 PB/year (mix of full events & ones 
where only high-level info kept)

Heavy use of machine learning algorithms 
throughout the Run 1 and Run 2 trigger.

V.Gligorov, MW, JINST 8 (2012) P02013.

70% of output events here classified 
using ML algorithms. 

40% of output events here classified 
using ML algorithms. 

ML also used online in tracking, particle 
ID, etc. (more on this later).

FPGA-based hardware

1 TB/s 40 MHz

1 MHz

100 kHz



29

Real-Time Processing (Run 3)

Real-time reconstruction for 
all charged particles with pT 
> 0.5 GeV.

Data buffered on disk while 
alignment/calibration done.

Full real-time reconstruction 
for all particles available to 
select events.

20 PB/year (mostly only high-level info 
kept, few RAW events to be stored)

Per fo rm ing the cha rged -pa r t i c l e 
reconstruction on 5 TB/s of data in real 
time will be a challenge. Investigating ALL 
options here — use ML to speed it up? 
(Indeed, we already do some of this.)

Keeping the vast wealth of physics data 
will also be a challenge. Plan to migrate 
most of remaining classification to ML-
based algorithms. Autoencoder-based 
data compression? 

We are also working on ML-based 
anomaly detection.

5 TB/s 40 MHz



N.b., real-time alignment and calibration is NOT required to 
use ML in an online system. 

We first introduced ML into our primary event-classification 
algorithm at the start of 2011 data taking, but real-time 
calibrations were not implemented until 2015.

Our Run 1 ML-based trigger algorithm collected the data 
used in about 200 papers to date — and it was run on 
imperfect data (but designed to be robust against run-time 
instabilities). 



Real time alignment and calibration
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alignment and calibration alignment

Online alignment stability

update alignment constants only when above threshold
(dashed lines)

VELO opens and closes each fill (protect sensors during
injection): expect updates every few fills
tracking system (TT, IT, OT): expect updates every few weeks
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Real-Time Calibration

VELO opens/closes every fill, expect 
updates every few fills. Rest of 
tracking stations only need updated 
every few weeks.

RICH gases indices of refraction must be 
calibrated in real time; requires ~1 min to 
run, and new calibrations are required for 
each run.

Calibration data is sent to a separate 
“stream” from the physics data after the 
first software-trigger stage. This permits 
running the calibrations on the online farm 
simultaneously with running the trigger.
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2

FIG. 2. Side view of the LHCb RICH detector upstream of the
magnet.

system, and calibrate the refractive index of radiators and
the HPD image with good precision. These factors are all
time-dependent, necessitating real-time calibration and
alignment of the LHCb RICH detectors, and the tracking
system.
Calibration and alignment
Calibration of the refractive index of the RICH radi-
ators

The refractive index of the gas radiators depends on
the ambient temperature and pressure, and the exact
composition of the gas mixture; so it can change in time.
These quantities are monitored by hardware to compute
an expected refractive index, but this does not have a
precision that is high enough for the physics analysis,
therefore it needs to be further corrected. As shown in
Fig. 3, the distribution of the difference between the re-
constructed and expected Cherenkov angle is fitted to ob-
tain the shift, which is then converted to a scale factor of
the expected refractive index according to studies based
on simulation.

About 50 Hz of events are sent to multiple online re-
construction tasks, which run in parallel, and the result-
ing histograms are merged at the end of each run. Then
a dedicated task is used to fit the histograms merged run-
by-run and produce calibration constants to be used by
the RICH reconstruction in the final stage of the software
trigger. The maximum run length is one hour.
Calibration of the HPD images

The Hybrid Photon Detector is used to detect
Cherenkov photons. As shown in Fig. 4, the photoelec-
tron produced at the photocathode is accelerated by a
high voltage of up to 20 kV onto a reverse-biased pixel-
lated silicon detector, with a de-magnification factor of

delta(Cherenkov Theta) / rad
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FIG. 3. Difference between the reconstructed and expected
Cherenkov angle before the calibration.

FIG. 4. Schematic drawing of the Hybrid Photon Detector
(HPD).

about 5 [6]. The HPD anode images are affected by the
magnetic and electric fields, and have been observed to
move and change their size, possibly due to changes in
these residual fields when the high voltage is cycled each
LHC fill. Such changes could degrade the reconstruction
of the Cherenkov angle and affect the PID performance.
Therefore the centre and radius of all the HPD images
are calibrated run-by-run. Figure 5 shows the calibra-
tion process. First, the centre of the image is cleaned to
eliminate ion feedback. Then a Sobel filter is used to de-
tect the edges of the image that are fitted to determine
the centre and the radius of the image, which are used by
the RICH reconstruction in the final stage of the software
trigger. As only the raw HPD data needs to be decoded,
more than 500 Hz of events are processed run-by-run.
Alignment of the RICH mirror system

The Cherenkov photons emitted by the charged parti-
cles passing through the RICH detectors are focused onto
the photon-detector plane by the spherical and secondary
mirrors. In case of misalignment the centre of Cherenkov
ring would not correspond to the intersection point of the
charged track, and this would introduce a dependence
of the difference between the measured and expected
Cherenkov angle on the azimuthal angle of the ring, as
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Calorimeters

The primary use of the calorimeters for charged PID is in identifying electrons.  

Using electrons from photon conversions and hadrons from D0 decays, e and 
h PDFs are constructed from data vs track 3 momentum.
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Figure 34: Distribution for the ECAL of E/pc for electrons (red) and hadrons (blue), as obtained
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Figure 35: Electron identification e�ciency versus misidentification rate.
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Figure 33: Ratio of photon detection e�ciencies ✏(� ! e

+
e

�)/✏(�CALO) from the decay of ⇡0

mesons in data (red) and simulations (blue).

information is based on signal and background likelihood distributions constructed for each
sub-detector. In each case, reference histograms correlating the energy measurement with
the particle momentum are produced. For example, Figure 34 shows the E/pc distribution
in the ECAL for electrons and hadrons, produced using the first 340 pb�1 recorded in 2011.
The electron distribution has been produced using reconstructed electrons from photon
conversions and the hadron distribution using pions and kaons from D

0 meson decays.
From these distributions, the log-likelihood di↵erence between electrons and hadrons is
derived.

For the ECAL, the log-likelihood di↵erence for electron and hadron hypotheses
�logLECAL(e � h) is computed based on both E/pc and the �2

2D estimator defined in
Section 3.2. The electron hypothesis likelihoods for the PS, �logLPS(e�h) and the HCAL
�logLHCAL(e� h) are built using the energy deposits in each sub-detector. A combined
estimator is then formed for the calorimeter system by taking the sum of the individual
estimators from the PS, the ECAL and the HCAL,

�logLCALO(e� h) = �logLECAL(e� h) +�logLHCAL(e� h) +�logLPS(e� h) . (5)

Figure 35 shows the combined electron identification e�ciency defined above versus the
misidentification rate obtained by varying the selection criteria applied to the likelihood
di↵erence.

The electron identification performance is evaluated using the data recorded in 2011,
which are su�cient for it to be measured using a tag-and-probe method. This is applied
to B

± ! J/ K

± candidates with J/ ! e

+
e

�, where one of the electrons is required to
be identified by its electron ID (etag) while the second electron is selected without using
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RICHs
The primary role of the RICHs is charged-hadron ID (π, K, p).
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RICHs
The primary role of the RICHs is charged-hadron ID (π, K, p).

Calculate the likelihood of each RICH ring pattern observed under various PID 
hypotheses, then use “DLL” to arbitrate (calibrate/validate using KS→ππ, 
Λ→pπ, and D0→Kπ data samples). 
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Figure 39: Kaon identification e�ciency and pion misidentification rate as measured using
data (left) and from simulation (right) as a function of track momentum [81]. Two di↵erent
�logL(K� ⇡) requirements have been imposed on the samples, resulting in the open and filled
marker distributions, respectively.

other minimising the misidentification rate.
For each track the likelihood that it is an electron, muon, pion, kaon or proton is

computed. In the first approach it is required that, for each track, the likelihood for the
kaon mass hypothesis is larger than that for the pion hypothesis, i.e. �logL(K� ⇡) > 0.
When averaging over the momentum range 2 – 100 GeV/c one finds the kaon e�ciency
to be ⇠ 95% with a pion misidentification rate of ⇠ 10%. A stricter PID requirement,
�logL(K� ⇡) > 5, reduces the pion misidentifiaction rate to ⇠ 3% at a modest loss in
kaon e�ciency of ⇠ 10% on average. Figure 39 also shows the performance in simulation,
for the same exclusive control channels and PID requirements as above for data. Good
agreement with data is observed for both sets of PID requirements.

The Run I conditions, with multiple interactions per bunch crossing and the resulting
high particle multiplicities, provide an insight into the RICH performance at possible future
higher luminosity running. Figure 40 shows the pion misidentification fraction versus
the kaon identification e�ciency as a function of track multiplicity and the number of
reconstructed primary vertices, as the requirement on the likelihood di↵erence�logL(K�⇡)
is varied. The results demonstrate some degradation in PID performance with increased
interaction multiplicity. However, the performance is still excellent and gives confidence
that the RICH system will continue to perform well during LHC Run II.

4.3 Muon system based particle identification

The identification of a track reconstructed in the tracking system as a muon is based on the
association of hits around its extrapolated trajectory in the muon system [82]. A search
is performed for hits within rectangular windows around the extrapolation points where
the x and y dimensions of the windows are parameterised as a function of momentum at
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Muon System
Muons are identified by looking for hits in the muon system, which is shielded 
by both the ECAL, HCAL, and whose stations are interleaved with iron 
absorbers.  

MisID from π,K→μ in flight, shared hits with a real muon, punch through, etc.
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Combined DLLs
By combining the likelihoods from the RICHs, calorimeter system, and the 
muon system, LHCb obtains even better PID performance.
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for particles with momentum in the range p > 3 GeV/c. The dotted lines show the DLL performance, while
the muon DLL performance is shown with a solid line.
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Consider the common case of K→μ decay in flight.  If it was still a kaon when 
it passed through the RICH, then the RICH likelihood will show this.

E.g., CombDLL reduces the B→hh misID rate by a factor of 6 for a loss of 
only 3% of Bs→μμ signal. 
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SV Tagging

Each feature provides some discrimination power, but typically only between 
b,c vs light or b vs c -- none are powerful enough to fully separate types.

•mass and “corrected” mass;

•transverse distance from and flight distance x2 
of PV to SV;

•pT(SV)/pT(jet) and ΔR(SV,jet);

•number of tracks in SV, number not in the jet, 
and sum of IP x2 of all SV tracks;

• net charge of the SV.

b, c-jet Tagging

Secondary Vertex Tagger (1) LHCb-PAPER-2015-016

• build 2-body SVs
•

n-body SVs from linking 2-body
SVs with shared tracks

• require vertex flight direction
within jet, �R(SV, jet) < 0.5

• two BDTs
• BDT(bc|udsg): separates

udsg-jet from b, c-jet
• BDT(b|c): separates b-jet from

c-jet

SV

jet

PV

Ilten b, c-tagging, W + b, c-jet April 21, 2015 4 / 20

Look for an SV “in” the jet (direction of flight in the jet cone). This occurs about 
70%, 25%, 1% of the time for b, c, light jets. Next, use SV features to 
discriminate: 

JINST 10 (2015) P06013
LHCb-PAPER-2015-016
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SV Features
Comparison of 2 of the best features in data and simulation:

Any cut we would make here would either be inefficient or lack purity.
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Figure 7: Two-dimensional M
cor

versus SV track multiplicity fit results for (top) B+jet, (middle)
D+jet and (bottom) µ(b, c)+jet data samples. The left plots show the projection onto the M

cor

axis, while the right plots show the projection onto the track multiplicity. The highest M
cor

bin
includes candidates with M

cor

> 10GeV.

4.3 E�ciency measurement using highest-pT tracks

To determine the jet-tagging e�ciency, the jet composition prior to applying the SV tag
must be determined. This is necessarily more di�cult than determining the SV-tagged
composition. The �2

IP

distribution of the highest-p
T

track in the jet is used for this task.
For light-parton jets the highest-p

T

track will mostly originate from the PV, while for
(b, c) jets the highest-p

T

track will often originate from the decay of the (b, c) hadron. To
avoid possible issues with modeling of soft radiation, only the subset of jets for which the

11

JINST 10 (2015) P06013
LHCb-PAPER-2015-016

B+jet

D+jet
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from simulation. The curves are obtained by varying the BDT(bc|udsg) requirement.

number of tagged (b, c) jets and the total number of (b, c) jets must be determined. The
tagged (b, c) yields are obtained by fitting the SV-tagger or TOPO BDT distributions in the
subsample of jets that are tagged by an SV. The total number of (b, c) jets is determined by
fitting the �2

IP

distribution of the highest-p
T

track in the jet. The (b, c)-tagging e�ciency
is the ratio of the tagged over total (b, c)-jet yields.

An alternative approach employed by other experiments (see, e.g. Ref. [24]) is to
measure the e�ciency using the subsample of jets that contain a muon. This approach has
the advantage that the (b, c)-jet content is enhanced due to the presence of muons from
the semileptonic decays of (b, c) hadrons; however, the disadvantage is that this method
assumes that mismodeling of the tagging performance is the same for semileptonic and
inclusive decays. Both the highest-p

T

track and muon-jet methods are used in this analysis
to study the jet-tagging performance.

Combined fits of several data samples enriched in (b, c) jets are performed to obtain
the tagging e�ciencies. It is important to include the systematic uncertainties on both
the tagged and total (b, c)-jet yields for each data sample in the combined fits.

This section is arranged as follows: the data samples used are described in Sec. 4.1; the
BDT fits used to obtain the tagged (b, c)-jet yields are given in Sec. 4.2; the highest-p

T

-track
�2

IP

fits used to obtain the total (b, c)-jet yields are described in Sec. 4.3; the muon-jet
subsample method is discussed in Sec. 4.4; the systematic uncertainties on the tagged and
total (b, c)-jet yields are presented in Sec. 4.5; and the (b, c)-tagging e�ciency results are
given in Sec. 4.6.

4.1 Data samples

Events that contain either a high-p
T

muon or a fully reconstructed (b, c) hadron, referred
to here as an event-tag, are used to measure the jet-tagging e�ciencies in data. The
highest-p

T

jet in the event that does not have any overlap with the event-tag is chosen as

7
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ML SV Tagging
Put 10 features into two BDTs: one for b,c vs light, and another for b vs c.

Could cut on both BDT responses and 
obtain high-purity b-jet or c-jet samples. 
Alternatively, can fit the 2-D BDT 
distribution in data to extract the b-jet 
and c-jet yields.
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Figure 1: SV-tagger algorithm BDT(b|c) versus BDT(bc|udsg) distributions obtained from
simulation for (left) b, (middle) c and (right) light-parton jets.

3.3 Performance in simulation

Figure 1 shows the SV-tagger BDT distributions obtained from simulated W+jet events
for each jet type. The distributions in the two-dimensional BDT plane of SV-tagged b, c,
and light-parton jets are clearly distinguishable. The full two-dimensional distribution
is fitted in data to determine the jet flavor content. However, to aid in comparison to
other jet-tagging algorithms, a requirement of BDT(bc|udsg) > 0.2 is applied to display
the performance obtained from simulated events in Fig. 2. This requirement is about 90%
e�cient on SV-tagged (b, c) jets and highly suppresses light-parton jets. The (b, c)-jet
e�ciencies are nearly uniform for jet p

T

> 20GeV and for 2.2 < ⌘ < 4.2, but are lower for
low-p

T

jets and for jets near the edges of the detector. The misidentification probability of
light-parton jets is less than 0.1% for low-p

T

jets and increases to about 1% at 100GeV.
Figure 3 shows the (b, c)-jet e�ciencies versus the mistag probability of light-parton jets
obtained by increasing the BDT(bc|udsg) cut.

For the TOPO algorithm, in the trigger a BDT requirement is always applied; the
requirement is looser when the SV contains a muon. In the LHCb measurement of the
charge asymmetry in bb̄ production [23], this same looser BDT requirement was applied to
tag a second jet in the event. Figure 2 shows the performance of the TOPO algorithm,
obtained from simulated events, for both the nominal and loose BDT requirements. The
nominal trigger BDT requirement strongly suppresses c and light-parton jets, with the
misidentification probability of light-parton jets being 0.01% for low-p

T

jets. Such a strong
suppression is required during online running due to output rate limitations.

The jet-tagging performance is measured in simulated events with one pp collision and
two or more pp collisions and found to be consistent. The tagging performance is also
studied in simulation using di↵erent event types, e.g. top-quark and QCD di-jet events,
with only small changes in the tagging e�ciencies and BDT templates observed for (b, c)
jets. The mistag probability of light-parton jets is found to be higher for high-p

T

jets in
events that also contain (b, c) jets. This is discussed in detail in Sec. 5.

5
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LHCb simulation: each distribution normalized to one; recall that 70%, 25%, 1% of b, c, light jets have an SV.
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2-D BDT Fits
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Figure 7: Two-dimensional M
cor

versus SV track multiplicity fit results for (top) B+jet, (middle)
D+jet and (bottom) µ(b, c)+jet data samples. The left plots show the projection onto the M

cor

axis, while the right plots show the projection onto the track multiplicity. The highest M
cor

bin
includes candidates with M

cor

> 10GeV.

4.3 E�ciency measurement using highest-pT tracks

To determine the jet-tagging e�ciency, the jet composition prior to applying the SV tag
must be determined. This is necessarily more di�cult than determining the SV-tagged
composition. The �2

IP

distribution of the highest-p
T

track in the jet is used for this task.
For light-parton jets the highest-p

T

track will mostly originate from the PV, while for
(b, c) jets the highest-p

T

track will often originate from the decay of the (b, c) hadron. To
avoid possible issues with modeling of soft radiation, only the subset of jets for which the
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Figure 6: From a b-jet and c-jet enriched data sample of Ref. [11]: (left) SV-tagger BDT
responses observed in data (annotation added here to show roughly where jets of each type
are found); (middle) projection onto the x-axis; and (right) projection onto the y-axis. The
BDT templates shown here were obtained from simulation. This and similar data samples
were used to calibrate the BDT responses for use in physics analyses.

simulation was known to model heavy-flavor hadron decays well, whereas the description of
jet properties had not yet been fully validated using data. Figure 6 shows that despite this
simplified approach, the separation between b-jets, c-jets and light-parton jets is excellent.

For Run 2, we plan to investigate using additional information to improve the perfor-
mance. We also plan to approach this as a true 3-class problem, rather than two 2-class
ones. As part of the jet-tagging development, we will update our bb̄ charge asymmetry mea-
surement [5] and make the first such measurement for cc̄. Recall that Ref. [37] suggested
that �(cc̄)/�(bb̄) provides a good standard candle to use in c-tagging calibration; therefore,
it makes sense to add these dijet measurements into the tagging-development project.

6.2.2 Intrinsic Strangeness and Charm

Whether there is intrinsic (non-perturbative) charm (IC) content in the proton at the ⇡ 1%
level is an open (and hotly debated) question. There is theoretical interest in the role that
non-perturbative dynamics play in the nucleon sea. Furthermore, the presence of IC in
the proton would a↵ect the production cross sections of many processes at the LHC either
directly, by scattering o↵ of a large-x c or c̄; or indirectly, since altering the charm PDF
would a↵ect the gluon PDF via the momentum sum rule. Ref. [44] considers two models
where the IC is valence-like (BHPS1, BHPS2) and two where it is sea-like (SEA1, SEA2).
LHCb has direct sensitivity to IC by measuring Z + c production, which can proceed via
gc! Zc. We performed a preliminary study of how these IC models a↵ect Z + c production
at LHCb. Figure 7 shows the relative increase in Z +c production when IC is included in the
proton. These valence-like models will be easily distinguishable in Run 2 at LHCb, while the
sea-like models may be distinguishable in Run 3. We propose to perform this measurement
using our c-jet tagging algorithm.

Intrinsic strangeness in the proton is well established. The s and s̄ PDFs are typically
assumed to be identical, but they need not be. Figure 7 shows the shift in the W + c
charge asymmetry that LHCb would observe for the charge-asymmetric strangeness PDFs
from Ref. [45] (some of these models may now be ruled out; the point here, however, is that
observably large asymmetries may occur in W + c production). Phil and I measured W + c

SV features used 
in 2 BDTs

Performance validated & calibrated using large heavy-flavor-enriched jet data 
samples. Two-D BDT distributions fitted to extract SV-tagged jet flavor 
content; c-jet and b-jet yields each precisely determined simultaneously. 

The 2-D BDT plane optimally utilizes all info that can separate (x-axis) b|c vs 
light and (y-axis) b vs c.
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Figure 3: SV-tagger BDT fit results for the B+jet data sample: (top left) distribution in data;
(top right) two-dimensional template-fit result; and (bottom) projections of the fit result with
the b, c, and light-parton contributions shown as stacked histograms.

4.2 Tagged jet yields178

The presence of a SV and its kinematic properties is used to discriminate between b, c179

and light-parton jets. As described in the previous section, the SV-tagger algorithm uses180

two BDTs while the TOPO uses one BDT for each SV. Figures 3-5 show the results181

of performing two-dimensional BDT fits to the SV-tagger BDT distributions in the182

B+jet, D+jet and µ(b, c)+jet data samples, respectively. The b and c jets are clearly183

distinguishable in the two-dimensional BDT distributions: b jets form a band in the upper184

right corner, while c jets form a band in the central to lower right. The light-parton185

jets cluster near the origin but are di�cult to see due to the low light-parton-jet SV-tag186

probability. The BDT templates for b, c and light-parton jets, which are taken from187

simulation, describe the data well. Comparison of the BDT inputs between data and188

simulation are shown in Appendix A.189

A simple cross check on the b, c and light-parton yields is performed by fitting only190

two of the BDT inputs: the corrected mass defined in Eq. 1 and the number of tracks in191

the SV. The corrected mass provides the best discrimination between c jets and other jet192

types due to the fact that M
cor

peaks near the D meson mass for c jets3. The number of193

3This is true for all long-lived c hadrons when all tracks are assigned a pion mass.
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Calibration Data

MC templates are pretty good “out 
of the box”, but this data was used 
to calibrate them even better.

Bo th b - j e t and c - j e t y i e l ds 
determined precisely from these 
fits.
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Figure 4: Same as Fig. 3 for the D+jet data sample.
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Figure 5: Same as Fig. 3 for the µ(b, c)+jet data sample.
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Can clearly see b and c jet bands in the 2-
D BDT plots (light is blob near origin).
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