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Machine Learning

Supervised machine learning is a broad and evolving field. The most common
usage In physics is training algorithms to classify data as signal or
background by studying existing labeled (possibly MC) data, though usage is
expanding to other areas.
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There are too many categories of algorithms to even attempt to list them here.
In physics, most usage is either a boosted decision tree (BDT) or artificial
neural network (ANN) — so I'll briefly describe these. A simple way to think
about these is as dimensional-reduction algorithms. The try and learn the
optimal way to reduce N-D into 1-D (humans do the same thing with the
likelihood ratio). 5



Decision Trees

Start with a labeled training data sample. These may be obtained from
simulation, data sidebands, control modes, etc.
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Repeatedly split the data to maximize some FOM trying to produce pure B or
S “leaves”. Stop when can’t improve FOM, or when reaching some stopping
criteria (a subset of algorithm-specific hyper-parameters).



Boosting

Boosting is a family of methods that produce a series of “weak” classifiers that
when combined are extremely powerful.
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One common approach: Each DT in the series “boosts” the weight of events
based on trying to minimize some loss function. The end result is just a large

set of if-type statements leading to a return (many hyper-parameters).
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Neural Networks

ANNs send data from input neurons via synapses to a hidden layer (or
layers) of neurons, and then to the output neurons via more synapses.

ANN

Learning is typically done via back-propagation of the cost-function gradient
w.r.t. the NN parameters — the end result is just a function.



Overtraining

Want to avoid learning specifics of the training data
set (overtraining). Same idea as overfitting, this
results in a less predictive algorithm.

It is easy to spot severe overtraining by comparing
the performance on the training data set to an
independent (validation/testing) data set (cross
validation).

In short, most modern algorithms are pretty good at
avoiding this provided “good” hyper-parameters are
chosen (these can be problem specific however),
and sufficient training data exists.

An enlightened way of optimizing machine learning
hyper-parameters is Bayesian Optimization (e.g.
the spearmint package is a very good option).




Tools

Physicists used to mostly use TMVA in ROOT; however, the rest of the world
IS using the python scikit-learn package (sklearn for short), Keras, etc., and
our field is also moving this way.

Home Installation

scikit-learn

Machine Leaming in Python

Classification Regression Clustering
Identifying to which category an object Predicting a continuous-valued attribute Automatic grouping of similar objects into
belongs to. associated with an object. sets.
Applications: Spam detection, Image Applications: Drug response, Stock prices. Applications: Customer segmentation,
recognition. Algorithms: SVR, ridge regression, Lasso, ... Grouping experiment outcomes
Algorithms: SVM, nearest neighbors, — Examples Algorithms: k-Means, spectral clustering,
random forest, ... — Examples mean-shift, ... — Examples

Basics: Adaboost DT or Multilayer Perceptron NN (MLP); State-of-the-Art:

XGBoost DT or Deep NN (e.g. Tensorflow).
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In theory there's no difference
between theory and practice. In
practice there Is.

Yogl Berra
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Fake-Track Killer

Fake-track-killing neural network, most important features are hit multiplicities
and track-segment chi2 values from tracking subsystems.

LHCb-PUB-2017-011
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Run in the trigger on all tracks, so must be super fast. Use of custom
activation function and highly-optimized C++ implementation (ROOT’s TMVA

package provides stand-alone C++ code to run the trained algorithm).



Higgs to WW @ CMS

CMS actually published both cut-based and BDT-based Higgs exclusions for
the WW decay mode — so we can see directly what is gained:
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Higgs to WW @ CMS

Large regions of possibly m(H) values are excluded by the BDT-based
analysis that are NOT excluded by the cuts — using the same data!
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Charged PID: determining "\ \
whether a track originates ¥\’
fromane, Y, m K, p, or fake. S8

Info from the tracking,
calorimeter, RICH, and
muon systems all play an
important role here—and
are correlated.
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PID NNs

Single-hidden-layer NN trained on 32 features from all subsystems. Each is
trained to identify a specific type of particle (or fake track).
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Typically get a factor of 3x less pion contamination in a muon sample than
using the CombDLL approach — 10x less in a dimuon sample!

Currently exploring state-of-the-art: XGBoost ~ Deep NN ~ 50% less BKGD
than basic BDT or ANN, which again give 2-3x less BKGD than DLLSs.
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M L J et Tag g i ng JINST 10 (2015) P06013

LHCb-PAPER-2015-016

Put 10 features into two BDTs: one for b,c vs light, and another for b vs c. No
feature can fully separate types, but their correlations (largely) can.

LHCDb simulation: each distribution normalized to one; 70%, 25%, 1% of b, c, light jets are tagged.
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Could cut on BDT responses to obtain high-purity b-jet or c-jet samples.
Alternatively, fit 2-D BDT distribution to extract the b-jet and c-jet yields.

Looked at doing a single 3-class algorithm but that doesn’t seem to help here (shown to work better in other applications).

14



ML Jet Tagging

2-D BDT plane (nearly) optimally utilizes 10-D info to ID b, ¢, and light jets.
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Performance validated & calibrated using large heavy-flavor-enriched jet data
samples (2-D data validation much easier than 10-D!). Some analyses cut on
these BDT responses, others fit the 2-D distributions to extract b,c,| yields.
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ML in Analysis

LHCb-PAPER-2017-001

Continuing to move beyond just
cutting on response ... Calibrate
BDT to have uniform response on
Bs— UM signal, bin data in BDT
response and analyze all dimuon
mass distributions simultaneously.

Constraints added to the likelihood
for relationships between yields
and shapes of the various
components from bin to bin.

Can enforce no mass dependence
if desired: see J. Stevens, MW
[1305.7248]; Rogozhnikova,
Bukva, Gligorov, Ustyuzhanin, MW
[1410.4140].

16



Regression

ML is also now being used for regression. For example, CMS has moved to
ML-based jet-energy corrections (e.g., for Higgs to bb).
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Detalls

*We typically train our ML algorithms on MC, then characterize their performance using
data control samples (same way we characterize our hardware). In principle, data samples
could also be used in the training, but then one would need to deal with BKGD in those
samples (this is not hard to do using event weights). N.b., make sure to not confuse non-
optimal with wrong or the inverse.

Dimensional reduction achieved by ML makes it possible to maximize performance
without complicating data-driven validation. There are many standard candles at the LHC
to use for data-driven validation — and also at JLab (we’re doing this now for GlueX).

*As an aside, systematics tend to scale with inefficiency, so a highly-performant black box
often incurs a smaller systematic than a simple, less performant algorithm — and also is
easier to deal with than hardware (of course there are exceptions).

*Bottom line: We use ML because it enables great science. It greatly improves
performance in many areas, even converting some measurements from infeasible to
simple & precise. The LHCD trigger is even mostly ML-based, and has been since the start
of 2011 data taking (see V.Gligorov, MW, JINST 8 (2012) P02013).
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Bayesian Optimization

Bayesian optimization refers to a family of methods that do global optimization
of black-box functions (no derivatives required).
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Start from prior for objective function, treat evaluations as data and produce a
posterior used to determine the next point to sample.

See https://github.com/HIPS/Spearmint for an excellent package in python. Example app: lliten, MW, Yang, Monte Carlo
tuning using Bayesian Optimization, [arxivi1610.08328], with fully working code on GitHub here: https://github.com/
yunjie-yang/TuneMC (could also be used for data calibration, or any black-box problem). 19



https://github.com/HIPS/Spearmint
https://github.com/yunjie-yang/TuneMC
https://github.com/yunjie-yang/TuneMC

ML & GoF

Since ML algorithms learn dimensional reduction, they can also be used to do goodness of
fit in high dimensions. This is simple: train a ML algorithm using the data and an MC
sample generated from the fit PDF, produce an unbiased 1-D ML response distribution for
each data type, then do a 1-D GoF test (e.g. chisquare) on these 1-D distributions (simple).

Weisser, MW [1612.07186]

N-D Gaussian (5% width change) 2-body decay using 4-vectors (not mass)
1.0 , —_ 1.0 S VIRY.
X ¥ ‘
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The ML learns an approximation of the mass here. In this toy example, the mass (which is
a weird 8-D manifold) is optimal. Knowing that—and using it—we can beat the machine
(Whiteson et al showed Deep Learning can really learn things like the mass and other
human-designed features).
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Tools, etc.

*ML algorithms in HEP used to be mostly ROOT’s TMVA , but are now migrating more and
more to scikit-learn, Keras, etc.; i.e., we are moving away from physics-specific software
and towards the tools used by the wider ML community. Hyper-parameter tuning using
spearmint, hyperopt, etc. (see also liten, MW, Yang [1610.08328]).

Custom loss functions, e.g., response is de-correlated from some set of features
(Stevens, MW [1305.7248]; Rogozhnikova, Bukva, Gligorov, Ustyuzhanin, MW
[1410.4140]). Already used in several papers (e.g. LHCb, PRL 115 (2015) 161802), and
currently being used in many papers to appear soon.

Many useful tools provided in the HEP-ML package pypi.python.org/pypi/lhep_ml/0.2.0,
which is basically a wrapper around sklearn, and in REP https://github.com/yandex/rep
(both produced by our colleagues at Yandex).

*N.b., beware of non-general optimizations in some algorithms (e.g. CNNSs), i.e. make sure
to use the right tool for your job.

*Attend the IML meetings (virtually) https://iml.web.cern.ch to learn about what other
experiments are doing. Send your students/post-docs to the HEP-ML school, etc.
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The Third Machine Learning summer school organized by Yandex School of Data
Analysis, Laboratory of Methods for Big Data Analysis of National Research University
Higher School of Economics and Imperial College London will be held in Reading, UK
from 17 to 23 July 2017.

The school is intended to cover the relatively young area of data analysis and
computational research that has started to emerge in High Energy Physics (HEP). It is
known by several names including “Multivariate Analysis”, “"Neural Networks”,
“Classification/Clusterization techniques”. In more generic terms, these techniques
belong to the field of "Machine Learning”, which is an area that is based on research
performed in Statistics and has received a lot of attention from the Data Science
community.

There are plenty of essential problems in High energy Physics that can be solved using
Machine Learning methods. These vary from online data filtering and reconstruction to
offline data analysis.

Students of the school will receive a theoretical and practical introduction to this new
field and will be able to apply acquired knowledge to solve their own problems. Topics
ranging from decision trees to deep learning and hyperparameter optimization will be
covered with concrete examples and hands-on tutorials. A special data-

science competition will be organized within the school to allow participants to get better
feeling of real-life ML applications scenarios.
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Summary

*Machine learning algorithms are now commonplace in HEP analyses. Open-
source tools are now very good and getting better daily.

*ML algorithms exploit high-dimensional correlations to improve on cut-based
selections (can also view them as dimensional-reduction methods). Even
basic algorithms tend to give big improvements, and state-of-the-art
algorithms are now easy for novices to use.

[t's vital that such algorithms can be validated/calibrated in a data-driven
approach—and not just because your more senior colleagues don't like them!

*Trust me, this is all easier to use than you think. | will (hopetully) prove this
to you after lunch. The real work is in obtaining/creating good training
samples, and in validating the performance in a data-driven way. Everything
else is really trivial now, which means physicists can spend ~100% of their
time on systematics instead of designing selections (as it should be).

*Near future: Deep learning, ML-based reconstruction, ML-based
compression, ...
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LHCb Detector

LHCb is a forward Spectrometer (2 <n <5)
(roughly 1-159°)

JINST 3 (2008) S08005
Int.J.Mod.Phys. A 30(2015) 1530022

RICH




JINST 8 (2013) P04022 Real -T| me P rOceSS| ng

e —

Simple feature-building in custom
electronics (e.g. FPGAs) required to reduce
the data volume to a transferable rate.

Online computing farm
processes 250 PB / year,
can only persist 1% of this.

(post zero suppression) R
LA 50 GB/s

LHCb will move to a triggerless-readout system for
LHC Run 3 (2021-2023), and process 5 TB/s in real
time on the CPU farm.




Real-Time Processing (Run 2)

1 TB/s ; 40 MHz
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Real-time reconstruction for

all charged particles with pr
> 0.5 GeV (25k cores).
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Data buffered on 10 PB
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Precision measurements benefit greatly
from using the final (best) reconstruction
iIn the online event selection—need real-
time calibration!

Final event selection done with access to
best-quality data (mostly done during
down time between fills), removing the
need (but perhaps not the desire) to
retain the ability to re-reconstruct the data
offline.

l—p 5 PB/year (mix of full events & ones

where only high-level info kept)
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Real-Time Processing (Run 2)

1 TB/s ; 40 MHz

( FPGA-based hardware J

50 GB/s l 1 MHz

p
Real-time reconstruction for

all charged particles with pr
> 0.5 GeV (25k cores).

~\

8 GB/s ¢ 100 kHz

(

Data buffered on 10 PB
disk while alignment/
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|

p
Full real-time reconstruction

for all particles available to
select events.

.

~\

J

Heavy use of machine learning algorithms
throughout the Run 1 and Run 2 trigger.

V.Gligorov, MW, JINST 8 (2012) P02013.

70% of output events here classified
using ML algorithms.

40% of output events here classified
using ML algorithms.

ML also used online in tracking, particle
ID, etc. (more on this later).

l—p 5 PB/year (mix of full events & ones

where only high-level info kept)
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Real-Time Processing (Run 3)

5 TB/s 40 MHz

p
Real-time reconstruction for

all charged particles with pr

~\

> 0.5 GeV.

p
Data buffered on disk while
alignment/calibration done.

.

~\

J

'

p
Full real-time reconstruction

for all particles available to
select events.

.

N

J

Performing the charged-particle
reconstruction on 5 TB/s of data in real
time will be a challenge. Investigating ALL
options here — use ML to speed it up?
(Indeed, we already do some of this.)

Keeping the vast wealth of physics data
will also be a challenge. Plan to migrate
most of remaining classification to ML-
based algorithms. Autoencoder-based
data compression?

We are also working on ML-based
anomaly detection.

|l—p 20 PB/year (mostly only high-level info

kept, few RAW events to be stored)
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N.b., real-time alignment and calibration is NOT required to
use ML in an online system.

We first introduced ML into our primary event-classification
algorithm at the start of 2011 data taking, but real-time
calibrations were not implemented until 2015.

Our Run 1 ML-based trigger algorithm collected the data
used Iin about 200 papers to date — and it was run on
imperfect data (but designed to be robust against run-time
instabilities).



Real-Time Calibration
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Calorimeters

The primary use of the calorimeters for charged PID is in identifying electrons.

Alog L C (e — h) = AlogLE* (e — h) + AlogL"“ (e — h) + AlogL™ (e — h)
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Using electrons from photon conversions and hadrons from D° decays, e and
h PDFs are constructed from data vs track 3 momentum.
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Cherenkov Angle (rads)

The primary role of the RICHs is charged-hadron ID (r, K, p).
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The primary role of the RICHSs is charged-hadron ID (1, K, p).
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Calculate the likelihood of each RICH ring pattern observed under various PID
hypotheses, then use “DLL” to arbitrate (calibrate/validate using Ks—rm,

A—prt, and DO—Krt data samples).
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Muon System

Muons are identified by looking for hits in the muon system, which is shielded
by both the ECAL, HCAL, and whose stations are interleaved with iron

absorbers.
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Combined DLLs

By combining the likelihoods from the RICHSs, calorimeter system, and the
muon system, LHCb obtains even better PID performance.

— —r Tt . T . r r r T — —r T T T r r r T 1
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Consider the common case of K—u decay in flight. If it was still a kaon when
it passed through the RICH, then the RICH likelihood will show this.

E.g., CombDLL reduces the B—hh mislID rate by a factor of 6 for a loss of

only 3% of Bs— UM signal. 36



SV Tagg | ng JINST 10 (2015) P06013
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Look for an SV “in” the jet (direction of flight in the jet cone). This occurs about
70%, 25%, 1% of the time for b, c, light jets. Next, use SV features to

discriminate:

*mass and “corrected” mass;

*transverse distance from and flight distance x?
of PV to SV;

*p7(SV)/pr(jet) and AR(SV,jet);

number of tracks in SV, number not in the jet, i
and sum of IP x2 of all SV tracks;

* net charge of the SV.

Each feature provides some discrimination power, but typically only between

b,c vs light or b vs ¢ -- none are powerful enough to fully separate types.
37
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Comparison of 2 of the best features in data and simulation:
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Any cut we would make here would either be inefficient or lack purity.
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(b,c)-jet tag efficiency

BDT(blc)

ML SV Tagging  wsrio o eosors

LHCb-PAPER-2015-016

Put 10 features into two BDTs: one for b,c vs light, and another for b vs c.

LHCDb simulation: each distribution normalized to one; recall that 70%, 25%, 1% of b, c, light jets have an SV.
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obtain high-purity b-jet or c-jet samples.
Alternatively, can fit the 2-D BDT
distribution in data to extract the b-jet
and c-jet yields.
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The 2-D BDT plane optimally utilizes all info that can separate (x-axis) blc vs
light and (y-axis) b vs c.
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Performance validated & calibrated using large heavy-flavor-enriched jet data
samples. Two-D BDT distributions fitted to extract SV-tagged jet flavor
content; c-jet and b-jet yields each precisely determined simultaneously.
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B B g Can clearly see b and c jet bands in the 2-
D BDT plots (light is blob near origin).
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Both b-jet and c-jet yields = o
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