
Simple ML Tutorial

Mike Williams
MIT

June 16, 2017

ROOT provides a C++ built-in ML package called TMVA (T, since all ROOT
objects start with T, and MVA for multivariate analysis).

TMVA is super convenient and “comfortable” for people used to using ROOT;
therefore, early ML usage in HEP was mostly TMVA-based. These days, our
field is moving more towards more widely used packages like scikit-learn
(sklearn), Keras, etc., which provide easy-to-use Python APIs — and are
used/contributed to by huge communities (excellent documentation, support,
etc — see scikit-learn.org).

Today, I’m assuming that this group is more comfortable with ROOT/C++ than
Python, so I’ll do a quick demo in TMVA. The main strategies, ease of use,
etc, are shared with Python packages like sklearn.

N.b., see also pypi.python.org/pypi/hep_ml/0.2.0 and https://github.com/
yandex/rep for HEP-ML tools (e.g. ROOT TTree to numpy array conversion,
HEP-specific algorithms, etc).

Machine Learning

2

http://scikit-learn.org
http://pypi.python.org/pypi/hep_ml/0.2.0
https://github.com/yandex/rep
https://github.com/yandex/rep

TMVA comes with many built-in tutorials, but they are (IMHO) mostly “too
nice” for a simple first go, so I wrote this one:

https://www.dropbox.com/sh/o31fb60lzeev96s/AABSRjeQ0vGtm1OSAbI-z93ua?dl=0

Please download tmvaex.tgz, then do:

> tar -xzvf tmvaex.tgz
> root
root [0] .L data.C
make signal and background samples (data.1.root and data.0.root)
root [1] makeAll()
plot the features (just to get a feel for the toy problem)
root [2] plot()

You should see that there is no separation in 1-D in most of the features, and
very little in the others. The difference between the two PDFs is in their
higher-D correlations — which is where ML is most useful.

TMVA Demo

3

Plots

4
0

500

1000

1500

2000

2500

3000

3500

x0
4− 2− 0 2 4

x1

4−

2−

0

2

4

0

1000

2000

3000

4000

5000

x0
4− 2− 0 2 4

x1

4−

2−

0

2

4

x3
4− 2− 0 2 40

5000

10000

15000

x4
4− 2− 0 2 40

5000

10000

15000

20000

x5
0 0.2 0.4 0.6 0.8 10

2000

4000

x0
4− 2− 0 2 40

5000

10000

15000

20000

x1
4− 2− 0 2 40

5000

10000

15000

20000

x2
5− 0 50

5000

10000

15000

Train AdaBoost BDT

5

First, let’s train the classic BDT using AdaBoost and “only” 100 trees and see
how we do. Continuing in ROOT:

root [3] .L train.C
the uncommented training string is for AdaBoost with 100 trees, so just run
root [1] train()

Was that faster than you expected? (It will take longer for more trees or a
neural network, but not much.)

Scroll up and check out the variable ranking. Does it make sense? (Always
check the final one of these, as sometimes it lists them at earlier stages in the
learning too.)

Train AdaBoost BDT

6

My dumb example writes the testing results to tmp.root, and then starts up a
GUI with these loaded by calling TMVA::TMVAGui(“tmp.root") — note that you
do not need to start up a GUI if you don’t want one.

Let’s play with this:
>Click on the 1a button to have TMVA plot the features, just as a sanity check
that you’ve configured things properly.

>Click on the 4b button to see the 1-D response for both data type, which
gives a feel for the separation power. Also, compare the distributions for each
type from the training and validation samples. This gives a feel for how much
overtraining there is.

>Click on 5b to see the ROC curve, e.g., I get 90% background rejection at
70% signal efficiency.

Train AdaBoost BDT

7

Now, change NTrees=100 to NTrees=1000 (1000 trees) in the string, and
rerun the training (.L train.C; train();). This takes 10x longer — but does much
better! I now get 90% background rejection with 95% signal efficiency.

This was the same training data and algorithm type, but a change to one
hyper parameter. How do we know what these should be set to?

You can get a feel for some broad ranges that are “sensible” by knowing what
the parameters do, and by checking the default values in various packages;
however, to get the optimal values requires trial-and-error. It is a black-box
optimization problem.

Since this is a problem for everybody—and everybody uses ML now—there
are really nice packages that will do this optimization for you. E.g., see
Spearmint on GitHub: https://github.com/HIPS/Spearmint, which uses
Bayesian optimization to quickly find the optimal set of hyper parameters
automatically (will take O(10)xN(pars) trainings to find it).

See http://tmva.sourceforge.net/optionRef.html for TMVA parameters.

https://github.com/HIPS/Spearmint
http://tmva.sourceforge.net/optionRef.html

Train BDTG and Neural Network

8

OK, now let’s try another algorithm. First, if you want, copy tmp.root to bdt.ada.root
if you want to compare results later without rerunning.

Comment out the first BookMethod and uncomment the second. This will change
the boosting algorithm from AdaBoost to Gradient boost. Now rerun the training (.L
train.C; train();). I get similar results, but the point is that using a different method is
trivial (copy tmp.root to bdt.gb.root if you want).

Now let’s do an MLP neural network. Comment out the previous BookMethod and
uncomment the 3rd one. Rerun the training (.L train.C; train();) and now you’ve
trained a single-hidden-layer NN. It takes a bit longer than the BDTs, but not much.

N.b., true Deep Learning, with many more hidden layers, is extremely powerful but
also takes a lot more CPU (often many days on a single multicore machine) to train
and memory to store the result. For now, this option is expensive, but with TPUs,
etc, industry is working hard on making this feasible even for everyday applications
in the near future.

See here https://root.cern.ch/doc/v608/TMVAClassification_8C.html for more
algorithms in TMVA.

https://root.cern.ch/doc/v608/TMVAClassification_8C.html

TMVA

9

TMVA creates some files locally that contain the info required to run your trained
algorithm later. See dataset/weights directory:

The .xml files are used by TMVAs Reader class which you can then pass a set of
features and it will compute the response.

The .C files are stand-alone C++ that you can run without even linking to ROOT.
You can easily use these files to evaluate the response later.

10

Tools
Physicists used to mostly use TMVA in ROOT; however, the rest of the world
is using the python scikit-learn package (sklearn for short), Keras, etc., and
our field is also moving this way.

Basics: Adaboost DT or Multilayer Perceptron NN (MLP); State-of-the-Art:
XGBoost DT or Deep NN (e.g. Tensorflow).

Tools, etc.
•ROOT’s TMVA is very convenient for physicists, but many are now migrating more and
more to scikit-learn, Keras, etc.; i.e., we are moving away from physics-specific software
and towards the tools used by the wider ML community. Hyper-parameter tuning using
spearmint, hyperopt, etc. (see also Ilten, MW, Yang [1610.08328]).

•Custom loss functions, e.g., response is de-correlated from some set of features
(Stevens, MW [1305.7248]; Rogozhnikova, Bukva, Gligorov, Ustyuzhanin, MW
[1410.4140]). Already used in several papers (e.g. LHCb, PRL 115 (2015) 161802), and
currently being used in many papers to appear soon.

•Many useful tools provided in the HEP-ML package pypi.python.org/pypi/hep_ml/0.2.0,
which is basically a wrapper around sklearn, and in REP https://github.com/yandex/rep
(both produced by our colleagues at Yandex).

•N.b., beware of non-general optimizations in some algorithms (e.g. CNNs), i.e. make sure
to use the right tool for your job.

•Always possible to squeeze out a bit more performance (stacking, blending, etc).

11

http://pypi.python.org/pypi/hep_ml/0.2.0
https://github.com/yandex/rep

Questions?

12

