Pion&Kaon SIDIS with CLAS12

Harut Avakian

DeepPWG meeting, JLab, June 15, 2017

- SIDIS studies with CLAS12
- The role of hadronic PID
- Full chain SIDIS simulation clasDIS->gemc->coatjava
- LTCC performance
- Conclusions

Hall B – Run Groups Hall B

Proposal	Physics	Contact	Rating	Days	Group	New equipment	Energy	Run Group	Target
E12-06-108	Hard exclusive electro-production of π^0 , η	Stoler	В	80		RICH (1 sector)			liquid
E12-06-108A	Exclusive N*->KY Studies with CLAS12	Carman		(60)]	Forward tagger			H ₂
E12-06-108B	Transition Form Factor of the η' Meson with CLAS12	Kunkel		(80)				•	
E12-06-112	Proton's quark dynamics in SIDIS pion production	Avakian	А	60	139		11		
E12-06-112A	Semi-inclusive Λ productiuon in target fragmentation region	Mirazita		(60)				F. Sabatié	
E12-06-112B	Colinear nucleon structure at twist-3	Pisano		(60)					
E12-06-119(a)	Deeply Virtual Compton Scattering	Sabatie	А	80					
E12-09-003	Excitation of nucleon resonances at high Q ²	Gothe	B+	40					
E12-11-005	Hadron spectroscopy with forward tagger	Battaglieri	A-	119					
E12-11-005A	Photoproduction of the very strangest baryon	Guo		(120)]				
E12-12-001	Timelike Compton Scatt. & J/ψ production in e+e-	Nadel-Turonski	A-	120]				
E12-12-007	Exclusive $\boldsymbol{\phi}$ meson electroproduction with CLAS12	Stoler, Weiss	B+	60					
E12-07-104	Neutron magnetic form factor	Gilfoyle	A-	30		Neutron			liquid
E12-09-007(a)	Study of partonic distributions in SIDIS kaon production	Hafidi	A-	30	<90	RICH (1 sector)	11	В	D ₂ target
E12-09-008	Boer-Mulders asymmetry in K SIDIS w/ H and D targets	Contalbrigo	A-	56	Forward tagger			K Hafidi	
E12-09-008A	Hadron production in target fragmentation region	Mirazita		(60)				rt. Hundi	
E12-09-008B	Colinear nucleon structuer at twist-3	Pisano		(60)					
E12-11-003	DVCS on neutron target	Niccolai	А	90					
E12-11-003A	In medium structure functions, SRC, and the EMC effect	Hen		(90)					
Beam time partia	l sum	765 (1355)	229						

Experiment ending with A or B are run group experiments approved by the CLAS collaboration. They are running parallel to the experiments with same experiment number. Experiments ending with (a) and (b) take data with both run groups.

PAC Days

1

PAC41 "High Impact" Selection

Row Color Yellow = High Impact Green = backup expt

Boldface = days designated High Impact Parentheses = days not counting toward High Impact total

Exp#	Exp name	Hall	Run Group/ Days	PAC Days	PAC grade	Comments		
TOPIC 3 : PDFs								
<u>E12-06-113</u>	BONuS : The Structure of the Free Neutron at Large x-Bjorken	в	F/40	(40) approved ★ 21 ↓	A	Requires BONuS Radial TPC upgrade ★42 days High Impact for the experiment		
<u>E12-10-103</u>	MARATHON : Measurement of the F2n/F2p, d/u Ratios and A=3 EMC Effect in DIS off the Tritium and Helium Mirror Nuclei	A	Tritium target group/61	↑ ★ 21 (42) approved	A	that runs first; experiments are equally important & both are essential		
<u>E12-06-110</u>	A1n HallC-3He : Meas of Neutron Spin Asymmetry A1n in the Valence Quark Region Using an 11 GeV Beam and a Polarized 3He Target in Hall C	С		36	A	Requires high luminosity 3He		
TOPIC 4T : TMDs								
<u>C12-11-111</u>	TMD CLAS-HDIce : SIDIS on Transverse polarized target	В	G/110	110 concurrent	A	Requires transversely polarized HDIce with electron beam		
<u>C12-12-009</u>	Dihadron CLAS-HDIce : Measurement of transversity with dihadron production in SIDIS with transversely polarized target	В	G/110	(110) concurrent	A	Requires transversely polarized HDIce with electron beam C1 Proposal		
<u>E12-06-112</u>	TMD CLAS-H(Unpol) : Probing the Proton's Quark Dynamics in Semi-Inclusive Pion Production at 12 GeV	В	A/139	(60) approved ★10	А	Hall B commissioning + 10 days * plus (50) commissioning days		
TOPIC 4G : GPDs								
<u>E12-06-114</u>	DVCS HallA-H(UU,LU) : Measurements of Electron-Helicity Dependent Cross Sections of DVCS with CEBAF at 12 GeV	А	Early: DVCS & GMp/62	(100) approved ★70	A	Hall A commissioning		
<u>C12-12-010</u>	DVCS CLAS-HDIce : DVCS at 11 GeV with transversely polarized target using the CLAS12 Detector	в	G/110	(110) concurrent	A	Requires transversely polarized HDIce with electron beam C1 Proposal		
E12-11-003	DVCS CLAS-D(UU,LU) : DVCS on the Neutron with CLAS12 at 11 GeV	В	B/90	(90) approved	A	Requires D target; central neutron detector ready in 2016 *Backup GPD-E meas if HDIce delayed		

Evolution and k_T -dependence of TMDs

Accessing spin-orbit correlations in measurements of Boer-Mulders function $h_1^{\perp}(x,k_T)$

- Large acceptance of CLAS12 allows studies of P_T and <u>Q²-dependence</u> of SSAs in a wide kinematic range in single and dihadron SIDIS
- Comparison of JLab12 data with HERMES, COMPASS will pin down transverse momentum dependence and the non-trivial Q² evolution of TMD PDFs in general, and Boer-Mulders (Sivers) functions in particular.

Kaons and pions

Pion/kaon expected rates

Significant fraction of Kaons at high energies

PID possibilities with TOF

TOF should be combined with LTCC and HTCC for final PID Will need well calibrated detector to do the probabilistic PID

CLAS12 reconstruction chain

• COATJAVA 4a.6.0

• GEMC 4a.1.0

Reconstruction of pions

Angles of pions are well reconstructed (minor shifts <0.5 GeV)

• GEMC 4a.1.0

CLAS12 reconstruction chain .coA

At high P_T fraction of Kaons increases

CLAS12: LTCC response

Avakian, JLab June 15

Jefferson Lab

11

p/K acceptances from reconstruction

Acceptances compatible with old FASTMC used for projections for CLAS12 proposals

Pion distributions and contamination

ERR: Develop a plan to ensure there is sufficient C4F10 available for operation in Fall 2017, or demonstrate how the planned physics goals may be achieved with out it.

40-50 % of pions and kaons are in the range of 2.5<P<4.2 GeV not covered by other detectors

The fraction of K+/ π +~0.25 and K-/ π -~0.15 in the range of 2.5<P<4.2 GeV Need detailed studies of Kaons to understand the effect of ~10% contamination

SUMMARY

Pion/Kaon identification critical for precision SIDIS studies!

For SIDIS with pions (highest priority):

- no major problems with acceptance with LTCC
- several LTCC sectors functional
- •in relevant kinematics contamination could reach ~10% (K+) and ~5% (K-)
- •need more input from KPP on LTCC performance
- •need more studies with realistic LTCC/TOF studies +LTCC with CO₂
- look for alternative gas
- •study detailed systematics due to partial PID

Pion/Kaon PID for commissioning run:

LTCC: one sector with C_4F_{10} consider (make available) $CO_2/...$ running for 1-2 sectors (need DA) HTCC: P>4.5 GeV TOF: P<2.5 GeV

Support slides...

Gases for LTCC $CO_2/...$

Table II. Gases for Cerenkov counters and their characteristics

Gas	Chemical formula	T _{cr} . ℃	P _{cr'} kg∕cm²	(n ₁₎ −1)·10 ⁴ (760 mm Hg, 0°C)	$\frac{(n-i)}{\rho},$ cm ³ /g	$\frac{\frac{A}{Z}\frac{n-1}{\rho}}{cm^{3}/g},$	$(n_D - 1) \cdot 10^2$ (20° C, 50 atm)	Literature	
Hydrogen Oxygen Air Nitrogen Nitric oxide Carbon monoxide Ammonia Methane Carbon dioxide Freon-14 Nitrous oxide Acetylene Hydrogen sulfide Sulfur dioxide Ethylene Ethane Freon-13 Sulfur hexafluoride Propane Freon-12 Freon C-318 Chloroform FC-75	$\begin{array}{c} H_{2} \\ O_{2} \\ N_{2} \\ NO_{2} \\ CO \\ NH_{3} \\ CH_{4} \\ CO_{2} \\ CF_{4} \\ N_{2}O \\ C_{2}H_{2} \\ H_{2}S \\ SO_{2} \\ C_{2}H_{4} \\ C_{2}H_{6} \\ CClF_{3} \\ SF_{6} \\ C_{3}H_{8} \\ CCl_{2}F_{2} \\ C_{4}F_{8} \\ CHCl_{3} \\ C_{8}OF_{16} \\ \end{array}$	$\begin{array}{c} -240 \\ -118 \\ -147 \\ -93 \\ -140 \\ 132 \\ -82,1 \\ 31.0 \\ -45.5 \\ 36.5 \\ 35.7 \\ 100 \\ 158 \\ 9.2 \\ 32.3 \\ 28.8 \\ 96.8 \\ 112 \\ 115 \\ 263 \\ 221 \\ \end{array}$	$\begin{array}{c} 13.2\\ 51.7\\ 34.6\\ 66.1\\ 35.6\\ 115\\ 47.3\\ 75.3\\ 38.1\\ 74.1\\ 63.7\\ 91.8\\ 80.4\\ 51.6\\ 49.8\\ 39.4\\ 43.4\\ 40.9\\ 27.6\\ 55.8\\ 16.3\end{array}$	$\begin{array}{c} 1.39\\ 2.72\\ 2.926\\ 2.97\\ 3.03\\ 3.34\\ 3.77\\ 4.41\\ 4.50\\ 4.61\\ 5.15\\ 6.10\\ 6.19\\ 6.60\\ 6.96\\ 7.06\\ 7.82^{**})\\ 7.85\\ 10.05\\ 11.27^{*})\\ 12.85^{**})\\ 14.55\\ 27.4^{**})\end{array}$	$\begin{array}{c} 1.55\\ 0.143\\ 0.226\\ 0.239\\ 0.260\\ 0.269\\ 0.488\\ 0.614\\ 0.228\\ 0.117\\ 0.260\\ 0.521\\ 0.402\\ 0.225\\ 0.551\\ 0.521\\ 0.551\\ 0.521\\ 0.551\\ 0.521\\ 0.120\\ 0.503\\ 0.204\\ 0.148\\ \end{array}$	$\begin{array}{c} 1.55\\ 0.286\\ 0.478\\ 0.452\\ 0.538\\ 0.832\\ 0.983\\ 0.456\\ 0.246\\ 0.246\\ 0.520\\ 0.965\\ 0.760\\ 0.450\\ 0.965\\ 0.760\\ 0.450\\ 0.866\\ 0.326\\ 0.251\\ 0.850\\ 0.422\\ 0.300\\ 0.563\\ 0.308\\ \end{array}$	0.628 1.26 1.35 1.39 1.50 1.54 0.328*), 8.46 kg/cm ² 2.29 3.08 2.40 4.11*), 49.4 atm 4.80*), 43.3 " 1.36*), 18.4 kg/cm ² 0.221*), 3.37 6.03 4.56*), 38.5 " 4.00*), 32.4 " 0.897*), 8.50 " 0.646*), 5.79	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
*At the saturated vapor pressure indicated alongside. **Obtained by calculation based on molecular refraction ^{[11,13}].									

LTCC in 4a.0.2.

LTCC response from reconstruction

CLAS12-MC: kinematic distributions

$$P_{h} \cdot k_{f} = \frac{1}{2} M_{hT} M_{fT} \left(e^{y_{f} - y_{h}} + e^{y_{h} - y_{f}} \right)$$
and
$$P_{h} \cdot k_{i} = \frac{1}{2} M_{hT} M_{iT} \left(e^{y_{i} - y_{h}} - e^{y_{h} - y_{i}} \right).$$

$$I_{0} = \frac{P_{h} \cdot k_{f}}{P_{h} \cdot k_{i}},$$
for which we identify
$$R(y_{h}, z_{h}, x_{bj}, Q) = \frac{P_{h} \cdot k_{f}}{P_{h} \cdot k_{i}},$$
for which we identify
$$R(y_{h}, z_{h}, x_{bj}, Q) \ll 1:$$
 collinear to outgoing quark,
$$R(y_{h}, z_{h}, x_{bj}, Q) = 1:$$
 collinear to incoming quark.

Jefferson Lab

-3

-2

-1

0

1

2 y_h

1

Studies of SIDIS using gemc 4a.0.2. (with LTCC)

clasDIS \rightarrow gemc \rightarrow coatjava \rightarrow hipo-dst

groovy scripts

FORTRAN code to access CLAS12 data in *hipo* format and more

G. Gavalian, S. Stepanyan

hipo→ntuples→root

