Machine Learning and CLAS12 PID: Tools and Concepts for solving **CLAS**sification Problems

Daniel Lersch / Michael C. Kunkel

Juelich Research Center

13.06.2017

Introduction and Motivation

- Assume a Dataset with: Species 1 and Species 2, where: $R \equiv \frac{N(\text{Species 1})}{N(\text{Species 2})} = \frac{1}{3}$
- The features of each species are charatcerised by variable 1,2, and 3 (e.g. momentum, energy, time etc.)
- Interested in Species 1 (could be a particle type or a certain decay) for further analysis, but:
 - **Species** 1 is the minority (e.g. electrons vs. pions)
 - All variables are correlated (i.e. rectangular cut is not sufficient)
- ⇒ Use machine learning based classifier to separate between the two species

- Classifier is defined by internal parameters (e.g. cut threshold, weights,..)
- Possible classifiers are: Boosted Decision Trees, Neural Networks, Support Vector Machines, Nearest Neighbour Finders,...

CLAS-Collaboration-Meeting

- Classifier is defined by internal parameters (e.g. cut threshold, weights,..)
- Possible classifiers are: Boosted Decision Trees, Neural Networks, Support Vector Machines, Nearest Neighbour Finders,...

- Classifier is defined by internal parameters (e.g. cut threshold, weights,..)
- Possible classifiers are: Boosted Decision Trees, Neural Networks, Support Vector Machines, Nearest Neighbour Finders,...

- Classifier is defined by internal parameters (e.g. cut threshold, weights,..)
- Possible classifiers are: Boosted Decision Trees, Neural Networks, Support Vector Machines, Nearest Neighbour Finders,...

Training the Classifier (Machine Learning)

- Parameters of the classifier are estimated/tuned by a training data set with defined output
- Usually: Use **Error** = f(**classifier output**, **desired output in training data set**) to iteratively update classifier parameters
- Several classifier-packages with learning algorithms available

Available Frameworks/Packages

1. The ROOT TMVA-Package https://root.cern.ch/tmva

- Designed for multivariable analysis
- Use different classifier types for one data set in one script
- Handling and preparation of input data
- Dedicated monitoring of classifier outputs and variable dependencies

2. The SMILE-Package http://haifengl.github.io/smile/

- Statistical Machine Intelligence and LEarning
- Useable in Java, Scala or any JVM language
- Several classifiers and learning algorithms available
- GUI available

3. The Apache Spark-Package https://spark.apache.org/

- Handling and manipulating of large data sets
- Dedicated machine learning libraries
- World wide community (companies, developers)
- Quite similar to TMVA

4. The Neuroph-Package http://neuroph.sourceforge.net/

- Java Neural Network Framework
- Different sorts of neural nets available (Perceptron ⇔ classifier, Hopefield ⇔ image recognition, Kohonen ⇔ Data-Mining)
- Easy to use, high flexibility and modularity
- Train your own net with a GUI \rightarrow It is a lot of fun!
- No. 2 to 4 are not physics analysis related \Rightarrow Used by wider machine learning community
- Examples shown in this talk are related to packages 3 and 4

Classifier1: A Neural Network

- Internal Parameters: Weights w_{ij}, z_{ij}
- Training set is defined by: Variable 1,2,3 and output 1 (for species 1), 0 (for species 2)
- Training iteratively done via back-propagation algorithm: Error \propto [Output(Network) - Desired Output of training set]² is propagated backwards through the network to update weights
- Training curve is one (but not the only one) plot to monitor/check the behaviour of a classifier
- Weierstrass-Theorem ⇔ Network Architecture

Daniel Lersch

CLAS-Collaboration-Meeting

Classifier2: A boosted Decision Tree

- Internal Parameters: Thresholds c_i and weights
- Use same training set as for neural network
- Adjust cut parameters c_i with respect to maximum separation between (B)ackground and (S)ignal
- Define weights for each event according to misidentification error (boosting)
 ⇒ New tree with updated cut parameters c_i
- Iteratively repeat procedure until misidentification error is minimal
 - \Rightarrow Forest of trees

Output and Performance of the Network/Classifier

- Further plots¹ to characterise a classifier: output variable and purity vs efficiency \Rightarrow Efficiency: $\frac{\#(\text{events correctly identified as species 1)}{\#(2\pi)}$
 - #(all events with species 1) #(events correctly identified as species 1
- $\Rightarrow Purity: \frac{\#(\text{events correctly identified as species 1})}{\#(\text{events identified as species 1})}$
- Here: Use a cut at 46% with: efficiency = 89% and purity = 89%
- Plot on the bottom right: Reciever-Operating-Characteristic (ROC) Curve²
- Apache Spark: Output of the classifier is directly translated to
 - 1: signal and 0: background \Leftrightarrow According to roc-curve

Plots have been generated using the Neuroph-package and x-checked with Apache Spark
 ²See also: Data Analysis in High Energy Physics, O.Behnke et. al

CLAS-Collaboration-Meeting

Results after using an Apache Spark Neural Network

 Top Row: Before classification / Bottom Row: After classification (similar results observed using the Neuroph-package)

- Reconstructed* ratio (Signal / Background): R = 1 / 3.014
 - * Including background

Results after using an Apache Spark Boosted Decision Tree

• Top Row: Before classification / Bottom Row: After classification

• Reconstructed^{*} ratio (Signal / Background): R = 1 / 2.959

* Including background

Comparing Classifier and their Performance

Apache Spark has built in tools (e.g. roc-curve) to analyse/judge the quality/performance
 Roc-curve shown here/used* in Apache Spark:

* Definitions and Plots here: https://en.wikipedia.org/wiki/Receiver_operating_characteristic True Positive Rate (TPR) (how many signal events are identified as signal?) vs. False Positive Rate (FPR) (how many background events are identified as signal?)

• Also available: Area under roc-curve, purity, accuracy,...

Classifier	Efficiency [%]	Purity [%]	TPR [%]	FPR [%]
NN	89	89	89	3.5
BDT	89	88	89	3.5

 \Rightarrow Both classifier show same performance

Uncertainties and Errors: Response to untrained Features

• Checked performance of the classifier on well-known training/test data set (see above)

• How does Classifier respond to unknown data regions/features it was not trained to?

Possible Check/Test: Apply uncertainty to test data set and check classifiers response

Daniel Lersch

CLAS-Collaboration-Meeting

Uncertainties and Errors: Response to untrained Features Uncertainty = 5%

- Example here: Use neural network shown on slide 6 (Did the same study with the boosted decision tree)
- Top Row: Before classification / Bottom Row: After classification
- Apply uncertainty on variable 1,2 and 3 ⇒ What is the classifiers response?

Daniel Lersch

CLAS-Collaboration-Meeting

Uncertainties and Errors: Response to untrained Features Uncertainty = 10%

- Example here: Use neural network shown on slide 6 (Did the same study with the boosted decision tree)
- Top Row: Before classification / Bottom Row: After classification
- Apply uncertainty on variable 1,2 and 3 ⇒ What is the classifiers response?

Daniel Lersch

CLAS-Collaboration-Meeting

Uncertainties and Errors: Response to untrained Features Uncertainty = 20%

- Example here: Use neural network shown on slide 6 (Did the same study with the boosted decision tree)
- Top Row: Before classification / Bottom Row: After classification
- Apply uncertainty on variable 1,2 and 3 ⇒ What is the classifiers response?

Daniel Lersch

CLAS-Collaboration-Meeting

Uncertainties and Errors: Response to untrained Features Uncertainty = 50%

- Example here: Use neural network shown on slide 6 (Did the same study with the boosted decision tree)
- Top Row: Before classification / Bottom Row: After classification
- Apply uncertainty on variable 1,2 and 3 ⇒ What is the classifiers response?

Daniel Lersch

CLAS-Collaboration-Meeting

Uncertainties and Errors: Response to untrained Features

- Monitor Purity as a function of the uncertainty
- Both classifier show similar behaviour/response
- If uncertainty/disagreement between training data and actual data is known
 ⇒ Get rough estimate for accuracy of classifier
- Or: If certain accuracy is required (precision measurement)
 ⇒ To which level is tuning between training data and actual data needed/possible?

Scaling of Background-Events

• Up to now: Classifier output =
$$\begin{cases} 1 : Accept Event \\ 0 : Reject Event \end{cases}$$

• Effect on final data sample:

- Very "clean" Species1 is dominating
- Background and signal shape are identical
 ⇒ Might need another (independent) observable for further analysis (e.g estimation of R)
- \blacktriangleright Loss of information \Leftrightarrow Depending on at which stage of analysis the classifier is used

Scaling of Background-Events

• Alternative: Classifier output = $\begin{cases} 1 : Accept \ Event \\ 0 : Accept \ every \ 10th \ Event \end{cases}$

• Effect on final data sample:

- Quite "clean" Species1 is still dominating
- Background and signal shape are less identical
 ⇒ Use tail to estimate background contribution
- ► Larger background sample available ⇔ Systematic x-checks

Data Flow and Analysis Chain

INPUT

- Decisive Power
- Additional preparation needed ?(e.g. normalisation)
- How strong correlated?
- Use measured data or MC?
- Avoid bias
- Impact/Importance on Classifier performance?
- → Know detector
- \rightarrow Calibration
- \rightarrow Match between data/MC

ANALYSIS

CLASSIFIER

- Which type?
- How to train?
- Implementation / Handling?
- Influence on systematics?
- Response to unknown data?
- Reliability?
- Optimization (i.e. Tuning the classifier)
- \rightarrow Training curve
- \rightarrow ROC plot
- → Monitoring plots
- \rightarrow Output variable
- \rightarrow Use dedicated frameworks
- \rightarrow Do not reinvent the wheel

OUTPUT

- How used in further Analysis?
- Used at which analysis Stage?
- Assigned error?
- Trustworthy?

\rightarrow Systematic studies \rightarrow Error handling

Data Flow and Analysis Chain: Application of Apache Spark on CLAS12 Data

Work done by / figure taken from Michael C. Kunkel

Daniel Lersch

CLAS-Collaboration-Meeting

Summary and Outlook

- Performed machine learning based analysis within the Apache Spark framework:
 - Identified a (particle) species out of a background dominated (fake) data set
 - Used a Neural Network and a Boosted Decision Tree
 ⇒ both performed similar
 - Checked performance/accuracy of each classifier under various conditions
- Analysis chain and data processing setup for CLAS12 PID with Apache Spark (Thanks to Michael C. Kunkel)
- ullet \Rightarrow Start implementation of classification algorithms
- Need:
 - i) Dedicated people to work on implementation and usage of classifiers
 - \Rightarrow Set up/establish machine learning group
 - ii) Work closely with detector calibration and simulation subgroups
 - iii) Always an additional pair of eyes
- Other frameworks (e.g. Neuroph-Package) available ⇔ X-checks ?
- Use machine learning algorithms also for:
 - Regression Fitting of data
 - Parameter estimation
 - Pattern recognition

• For further reading: https://www.jlab.org/indico/event/213/session/6/ contribution/23/material/slides/0.pdf (Talk by Michael Williams)

Daniel Lersch

Summary and Outlook

You just have to know what you are doing

Picture taken from: http://screenrant.com/things-you-did-not-know-about-wile-e-coyote/

Daniel Lersch

CLAS-Collaboration-Meeting