g14 beam-target helicity asymmetries for $\vec{\gamma} \vec{n} \rightarrow \pi^- p$ C

PHYSICAL REVIEW LETTERS

Beam-Target Helicity Asymmetry for $\vec{\gamma} \vec{n} \rightarrow \pi^- p$ in the N^* Resonance Region

D. Ho,² P. Peng,¹⁶ C. Bass,¹ P. Collins,³ A. D'Angelo,^{1,15} A. Deur,¹ J. Fleming,⁴ C. Hanretty,^{1,16} T. Kageya,¹ M. Khandaker,⁸ F. J. Klein,^{5,*} E. Klempt,⁷ V. Laine,¹² M. M. Lowry,¹ H. Lu,^{2,14} C. Nepali,⁹ V. A. Nikonov,^{7,10} T. O'Connell,¹³ A. M. Sandorfi,^{1,*} A. V. Sarantsev,^{7,10} R. A. Schumacher,² I. I. Strakovsky,⁵ A. Švarc,¹¹ N. K. Walford,³ X. Wei,¹ C. S. Whisnant,⁶ R. L. Workman,⁵ I. Zonta,¹⁵ K. P. Adhikari,^{35,9} D. Adikaram,⁹ Z. Akbar,²⁵ M. J. Amaryan,⁹ S. Anefalos Pereira,²⁷ H. Avakian,¹ J. Ball,³³ M. Bashkanov,⁴ M. Battaglieri,²⁸ V. Batourine,¹ I. Bedlinskiy,³² A. Biselli,²³ W. J. Briscoe,⁵ V. D. Burkert,¹ D. S. Carman,¹ A. Celentano,²⁸ G. Charles,^{9,33} T. Chetry,³⁶ G. Ciullo,²⁶ L. Clark,³⁹ L. Colaneri,¹³ P. L. Cole,³⁰ M. Contalbrigo,²⁶ V. Crede,²⁵ N. Dashyan,⁴⁵ E. De Sanctis,²⁷ R. De Vita,²⁸ C. Djalali,⁴² R. Dupre,^{31,33} A. El Alaoui,^{43,17} L. El Fassi,^{35,17} L. Elouadrhiri,¹ P. Eugenio,²⁵ G. Fedotov,^{42,38} S. Fegan,³⁹ R. Fersch,^{21,22} A. Filippi,²⁹ A. Fradi,³¹ Y. Ghandilyan,⁴⁵ G. P. Gilfoyle,⁴¹ F. X. Girod,¹ D. I. Glazier,^{39,4} C. Gleason,⁴² W. Gohn,¹³ E. Golovatch,³⁸ R. W. Gothe,⁴² K. A. Griffioen,²² M. Guidal,³¹ L. Guo,²⁴ H. Hakobyan,^{43,45} N. Harrison,^{1,13} M. Hattawy,¹⁷ K. Hicks,³⁶ M. Holtrop,⁴⁰ S. M. Hughes,⁴ Y. Ilieva,⁴² D. G. Ireland,³⁹ B. S. Ishkhanov,³⁸ E. L. Isupov,³⁸ D. Jenkins,⁴⁴ H. Jiang,⁴² H. S. Jo,³¹ K. Joo,¹³ S. Joosten,³⁷ D. Keller,¹⁶ G. Khachatryan,⁴⁵ A. Kim,^{13,34} W. Kim,³⁴ A. Klein,⁹ V. Kubarovsky,¹ S. V. Kuleshov,^{43,32} L. Lanza,¹⁵ P. Lenisa,²⁶ K. Livingston,³⁹ I. J. D. MacGregor,³⁹ N. Markov,¹³ B. McKinnon,³⁹ T. Mineeva,^{43,13} V. Mokeev,¹ R. A. Montgomery,³⁹ A. Movsisyan,²⁶ C. Munoz Camacho,³¹ G. Murdoch,³⁹ S. Niccolai,³¹ G. Niculescu,⁶ M. Osipenko,²⁸ M. Paolone,^{37,42} R. Paremuzyan,^{40,45} K. Park,¹ E. Pasyuk,¹ W. Phelps,²⁴ O. Pogorelko,³² J. W. Price,¹⁹ S. Procureur,³³ D. Protopopescu,³⁹ M. Ripani,²⁸ D. Riser,¹³ B. G. Ritchie,¹⁸ A. Rizzo,¹⁵ G. Rosner,³⁹ F. Sabatié,³³ C. Salgado,⁸ Y. G. Sharabian,¹ Iu. Skorodumina,^{38,42} G. D. Smith,⁴ D. I. Sober,³ D. Sokhan,^{31,39} N. Sparveris,³⁷ S. Strauch,⁴² Ye Tian,⁴² B. Torayev,⁹ M. Ungaro,¹ H. Voskanyan,⁴⁵ E. Voutier,³¹ D. P. Watts,⁴ M. H. Wood,²⁰ N. Zachariou,^{4,42} J. Zhang,¹ and Z. W. Zhao¹⁶

(CLAS Collaboration)

Phys. Rev. Lett. 118 (2017); arXiv:1705.04713 [nucl.ex]

Unfolding and interpreting the N* spectrum Class

 low energy structure of QCD lies encoded in the excited N* spectrum, a complex overlap of resonances with "dressed" vertices

- only lowest few in each band "seen" with $4 \star$ or $3 \star$ PDG status
 - need to understand the structure of the states that are observed and find the ones that aren't !

N* resonance ⇔ s-channel pole

• meson-loop "dressings" of the Electromagnetic vertex affect the dynamical properties (excitation mechanism) and determine Q² evolution, but do not affect the N* spectral properties • coupled-channel "dressings" of the strong vertex determine the N* spectral properties (mass/pole positions, widths)

dressings are beyond the current sophistication of LQCD or DSE field theories
 models, constrained by the spectrum and its couplings

data needed to unravel the N* spectrum

$$\gamma + N \Rightarrow (J^{\pi}=0^{-}) + N/\Lambda/\Sigma$$

spin states: 2 + 2 ⇒ 0 + 2 ⇒ 8 spin combinations ⇒ 4 unique (parity)

⇒ 4 complex amplitudes describe photo-production ⇔ 8 unknows

New goal: (Jlab, Bonn, Mainz)

- measure many polarization observables (of 16) 🗇 lots of proton data
- the electromagnetic interactions do not conserve isospin

$$\mathcal{A}_{\gamma p \to \pi^{+} n} = \sqrt{2} \left\{ \mathcal{A}_{p}^{I=1/2} - \frac{1}{3} \mathcal{A}^{I=3/2} \right\} \qquad \Leftrightarrow \quad \text{proton data determine } \mathcal{A}^{I=3/2}$$
$$\mathcal{A}_{\gamma n \to \pi^{-} p} = \sqrt{2} \left\{ \mathcal{A}_{n}^{I=1/2} - \frac{1}{3} \mathcal{A}^{I=3/2} \right\} \qquad \Leftrightarrow \quad \text{proton data determine } \mathcal{A}^{I=3/2}$$

⇒ both proton and neutron target data needed for the I= ½ amplitudes

γ+n data base is very sparse
 ⇔ γnN* couplings very poorly determined

- *Dec'2011 –to- May'2012*
- tagged photons with circular and linear polarization on polarized HD, E_{γ} : 700 2400 MeV
- this publication:

the beam-target "E" asymmetry in $\gamma D \rightarrow \pi^- p(p)$ with circularly polarized photons and longitudinally polarized Deuterons, W: 1500 – 2300 MeV

g14 ... with the last breath of the CLAS(6) detector

HDice frozen-spin target

- target: \varnothing 15 mm imes 50 mm
- material: solid HD
- dilution factors: 1/1 for \vec{n} 1/2 for \vec{p}

- < P(D) > = 25% (ave in g14)
- T_1 (1/e relaxation time) ~ years
- HDice-I: NIM A737 (2014) 107
- HDice-II: NIM A815 (2016) 31
- moved while polarized to Hall B

- sources of neutrons: D in HD and the target cell
- evaporate and pump away HD: residual backgrounds are small

⇒ after empty cell subtraction, all neutrons are polarizable

Jefferson Lab

- Bksub conventional application of sequential cuts, with empty subtraction
- *KinFit* energy & momentum conservation used in *Kinematic fitting* to improve accuracy of measured quantities
- BDT "Boosted Decision Trees" used to place simultaneous (rather than sequential) requirements

- 2π & reactions on target cell nucleons fail with Confidence Level < 0.05
- accept events with Confidence Level > 0.05
- apply |P_{miss}| < 0.1 GeV/c to accepted events

BDT analysis

Dao Ho (2015)

- select events for which the proton in Deuterium is a passive "spectator"
 ⇔ key variable is the momentum of the undetected proton in γ+n(p) → π⁻ p(p)
 - use the data itself to determine the kinematic region

in which the result is stable

 $|P_{miss}| < 0.1 \text{ GeV/c}$

applied in all three analyses

- theory perspective:
 FSI have negligible effect on E asymmetry in π⁻ p p final state
 (I = 1 pp final state is orthogonal to
 - (*I* = 1 *pp* final state is orthogonal to the initial deuteron wavefunction)
- effect of deuteron's D-state is negligible after $|P_{miss}| < 0.1 \text{ cut}$ (T.-S. H. Lee)

- asymmetries from the three analyses are statistically consistent
- weighted mean is taken as the best estimate of the asymmetry
- correlated errors are fitted to the expected χ^2 { Schmelling, Physica **51** (95)676 }

<u>Advantages</u>

- reduces hidden bias
- acceptance at extreme angles is different for the 3 methods; averaging improves reliability where PWA interference is large

The g14 beam-target "E" asymmetries for γ n $ightarrow \pi^-$ p

A. Sandorfi – CLAS collaboration meeting, June'2017

The g14 beam-target "E" asymmetries for γ n $ightarrow \pi^-$ p

A. Sandorfi – CLAS collaboration meeting, June'2017

The g14 beam-target "E" asymmetries for $\gamma n \Rightarrow \pi^- p$

The g14 beam-target "E" asymmetries for γ n $ightarrow \pi^-$ p

A. Sandorfi – CLAS collaboration meeting, June'2017

The g14 beam-target "E" asymmetries for $\gamma n \rightarrow \pi^- p$

Partial Wave Analyses

$$T_{\alpha\gamma} = \sum_{\sigma} \frac{K_{\sigma\gamma}}{\left[1 - c\overline{K}\right]_{\alpha\sigma}}$$

SAID (R. Workman, A. Švarc, I. Strakovsky, ...)

• sequential, unitary fit to all πN scattering and π -photoproduction data

- fit $\begin{bmatrix} 1 - c\overline{K} \end{bmatrix}$ to $\pi N \rightarrow \pi N$ and $\pi N \rightarrow \eta N$

⇔ determines all poles

- vary K(W) as polynomials in W to fit photo-production
- ⇔ no *new* resonances

BnGa (E. Klempt, V. Nikonov, A. Sarantsev, ...)

• simultaneous, coupled-channel analysis of πN and $\gamma N \rightarrow \pi N$, $\pi \pi N$, KY

- fit to SAID amplitudes for $\pi N \rightarrow \pi N$

- include new resonances as needed to improve fits for γN channels

• expectation for an isolated resonance:

• amplitude decomposed into $(L^{\pi N})_{IJ}(n/p)E/M$ partial waves

PWA: $I = 3/2 (\Delta^*)$ partial waves

PWA: I = 1/2 (N^*) *P*-waves

eg. SAID P13nM

BnGa P13nM

PWA: I = 1/2 (N^*) *G*-waves

eg. SAID G17nM

BnGa G17nM

- $h_{\gamma} = 1$, $h_N = \frac{1}{2} \iff A^{1/2}$, $A^{3/2}$
- residues from analytic continuation to a pole in the complex W plane

	A _n ^{1/2}	(10 ⁻³ GeV ^{-1/2})	A _n ^{3/2}	(10 ⁻³ GeV ^{-1/2})
	g14 PRL	previous	g14 PRL	previous
SAID				
N(1720)3/2+	-9 ±2	-21 ±4	+19 ± 2	-38 ±7
N(2190)7/2-	-6 ±9		-28 ±10	
<u>BnGa</u>				
N(1720)3/2+	tbd	-80 ±50	tbd	-140 ±65
N(2190)7/2-	+30 ±7	-15 ±12	-23 ± 8	-33 ±20

Jefferson Lab

PWA: I = 1/2 (N^*) *P*-waves

Jefferson Lab

PWA: I = 1/2 (N^*) *S*-waves

- Beam-Target helicity asymmetries (E) for $\gamma n \rightarrow \pi^- p$ just out in PRL
 - 1^{st} data on this observable and spans the full N^* energy range
 - 1st release of g14 data
- significant addition to the sparse γn data base
 ⇔ inclusion in PWA have resulted in significant changes to I = ½ multipoles
 - \Leftrightarrow improved determination of helicity amplitudes (γ nN* couplings) for N(1720)3/2⁺ & N(2190)7/2⁻, with SAID and BnGa agreement for A^{3/2}

potential signals from PDG* and PDG** resonances now under study

- next observables in the g14 pipeline:
 - beam asymmetry **S** & beam-target asymmetry **G** for $\gamma n \rightarrow \pi^- p$

