g13 $\gamma n \rightarrow p\pi$ - Differential Cross Section, N* Amplitudes

Paul Mattione, Jefferson Science Associates

CEBAF Large Acceptance Spectrometer

CLAS Collaboration Meeting – June 14, 2017

N* Predictions: Quark Model

- * Predictions: Capstick, Isgur[†]
 - * Relativized quark model
 - ★ States organized by J^P
 - Agrees well with lattice predictions below 2 GeV
- Many states missing, many others poorly understood

2200 2200 WeV/c² 2100 2000 1900 1800 1700 1600 1500 1400 1300 1200 $N3/2^{+}$ $N1/2^{+}$ $N5/2^+$ $N7/2^{+}$ N1/2N3/2 N5/2 N7/2N baryon model states

Legend Black: Certain or likely: ****, *** Blue: Fair or poor: **, * Red: No evidence

[†]S. Capstick, N. Isgur, Phys. Rev. D **34**, 2809 (1986)

N* Predictions: Quark Model

- * Predictions: Capstick, Isgur[†]
 - * Relativized quark model
 - ★ States organized by J^P
 - Agrees well with lattice predictions below 2 GeV
- Many states missing, many others poorly understood
- ***** Diquarks?

Jefferson Lab

<u>Legend</u> Black: Certain or likely: ****, *** Blue: Fair or poor: **, * Red: No evidence

[†]S. Capstick, N. Isgur, Phys. Rev. D **34**, 2809 (1986) Paul Mattione – CLAS Collaboration Meeting – June 14, 2017

<mark>yp vs. yn,</mark> Isospin

- For N* couplings to γN, important to study both γp & γn
 Disentangle Isoscalar (A^S), isovector (A^V) EM amplitudes[†]
- * $\gamma N \rightarrow \pi N$: Primary γN channel in resonance region
 - 4 possible reactions (below)
 - ***** SAID: Sparse $\gamma n \rightarrow \pi N$ data (3500 points) vs. $\gamma p \rightarrow \pi N$ (35400)

$$\begin{aligned} A_{\gamma p \to \pi^+ n} &= \sqrt{\frac{1}{3}} A_{I=3/2}^V - \sqrt{\frac{2}{3}} \left(A^V - A^S \right)_{I=1/2} \\ A_{\gamma n \to \pi^- p} &= \sqrt{\frac{1}{3}} A_{I=3/2}^V - \sqrt{\frac{2}{3}} \left(A^V + A^S \right)_{I=1/2} \\ A_{\gamma n \to \pi^0 n} &= \sqrt{\frac{2}{3}} A_{I=3/2}^V + \sqrt{\frac{1}{3}} \left(A^V - A^S \right)_{I=1/2} \\ A_{\gamma n \to \pi^0 n} &= \sqrt{\frac{2}{3}} A_{I=3/2}^V + \sqrt{\frac{1}{3}} \left(A^V + A^S \right)_{I=1/2} \end{aligned}$$

[†]R. L. Walker, Phys. Rev. **182**, 1729 (1969)

CEBAF Large Acceptance Spectromete

CLAS g13 Experiment

***** g13 experiment: 2006 – 2007, LD₂ target

* Analysis (g13a): $E_{e_{-}} = 2.655, 1.990 \text{ GeV}$

Jefferson Lab

Final-State Interactions in yd

- * γn: No free neutron targets
 - * Deuteron target: Isotropic Fermi-motion, final-state interactions (FSI)

6

- * Correct for FSI to extract γn cross sections from γd measurements
- * On γd, measure "quasi-free" (QF) differential cross sections
 - ***** QF: Cut (FSI) events with missing-p > 200 MeV/c
 - * FSI corrections: Model-dependent fit to data[†]

Reconstructed Kinematics

Track distributions: Detector was aging

Jefferson Lab

* Needed more sophisticated CLAS efficiency studies

π⁻ Triggering Efficiency

- g13: 2-sector trigger (Start-Counter x TOF)
- ***** Study $\gamma d \rightarrow pp\pi^-$ events, when each track in different sector
 - * Each track pair: If both fired trigger signal, study 3rd-track signal rate

8

π⁻ Triggering Efficiency

- * g13: 2-sector trigger (Start-Counter x TOF)
- * Study $\gamma d \rightarrow pp\pi^-$ events, when each track in different sector
 - * Each track pair: If both fired trigger signal, study 3rd-track signal rate
 - ***** Function of particle type, p, TOF scintillator, φ

π⁻ Triggering Efficiency

- * g13: 2-sector trigger (Start-Counter x TOF)
- * Study $\gamma d \rightarrow pp\pi^-$ events, when each track in different sector
 - * Each track pair: If both fired trigger signal, study 3rd-track signal rate
 - *** Function of particle type**, p, TOF scintillator, φ
- * TOF thresholds: Readout = 20 mV, pre-trigger = 100 mV
 - * g13 weak PMTs: Set to max voltage, gain often still too low

Compare Experiment, MC: п⁻

* $\gamma d \rightarrow p\pi^{-}(p)$ distributions match pretty closely

Jefferson Lab

11

[†]Modeling FSI in $\gamma d \rightarrow pp\pi^{-}$

- ★ Must correct for FSI to extract γn → pπ⁻ from QF γd → ppπ⁻
 ★ GWU & ITEP Moscow
- * $\gamma d \rightarrow pp\pi^- amplitude: \mathcal{M}_{\gamma d} = \mathcal{M}_{IA} + \mathcal{M}_{NN} + \mathcal{M}_{\pi N}$
 - * Leading terms: Impulse approximation (IA), NN FSI, πN FSI
 - * Fit constrained by SAID $\gamma N \rightarrow \pi N$, $NN \rightarrow NN$, $N\pi \rightarrow N\pi$

$$\frac{d\sigma}{d\Omega}(\gamma n) = R(E_{\gamma}, \theta)^{-1} \frac{d\sigma}{d\Omega}(\gamma d)$$

$$R(E_{\gamma},\theta) = \mathcal{M}_{\gamma d} / \mathcal{M}_{IA}$$

⁺V. E. Tarasov *et. al*, Phys. Rev. C **84**, 035203 (2011) Paul Mattione – CLAS Collaboration Meeting – June 14, 2017

FSI Correction Factor

- ★ Correction[†] < 10% except at forward angles: pp-FSI dominates</p>
 - * When pp both slow, backwards: Maximal wave function overlap
 - \star π⁻ faster than p: Leaves d sooner: Less FSI

* CLAS g13

- **★** 8424 bins, ≈ 400M events
- ***** 157 E_γ bins (10, 20 MeV)
- **★** W ≈ 1.31 2.37 GeV: N*'s
- ***** σ_{Total} typically 3.5% 15%
- ★ $\sigma_{\text{Scale}} \approx 3.4\%$ (not shown)

Jefferson Lab

 $\gamma n \rightarrow p\pi^-: CLAS g13, CLAS g10, SLAC, DESY, MAMI-B, Frascati$ $<math>\pi^- p \rightarrow \gamma n: BNL, LBL, LAMPF$ Fits (lines): SAID MA27, SAID PR15 BnGa 2014-02, MAID 2007

* CLAS g13

- **★** 8424 bins, ≈ 400M events
- ***** 157 E_γ bins (10, 20 MeV)
- W≈1.31 2.37 GeV: N*'s
- ***** σ_{Total} typically 3.5% 15%
- * $\sigma_{\text{Scale}} \approx 3.4\%$ (not shown)
- * New SAID fit of data: MA27
 - ★ Previous fit: PR15
 - * BnGa, MAID: Not fit to g13

<u>Legend</u>

 $\gamma n \rightarrow p\pi$: CLAS g13, CLAS g10, SLAC, DESY, MAMI-B, Frascati π - $p \rightarrow \gamma n$: BNL, LBL, LAMPF Fits (lines): SAID MA27, SAID PR15 BnGa 2014-02, MAID 2007

- ***** Peak low- θ : t-channel π⁻
- ★ Low energies ($E_v \le 1 \text{ GeV}$)
 - * Much old, low-stats data
 - Some E_γ: g13 < BNL, DESY, Frascati
 - **k** Low-θ, Low-E_γ:
 Different trend than SLAC
 - Otherwise good agreement

***** CLAS g10

Jefferson Lab

- ★ ≈ 850 bins, 1/10 g13
- ★ 34 E_y bins (50, 100 MeV)
- ★ $\sigma_{\text{Scale}} \approx 12\%$ (not shown)
- ***** High energies ($E_{\gamma} > 1 \text{ GeV}$)
 - CLAS g10 systematically low
 - ***** But has high σ_{Scale}
 - Overall excellent agreement

SAID MA27 Fit

- ***** Simultaneous fit to all 4 γN channels to extract EM multipoles
 - ***** SAID $\pi N \rightarrow \pi N$ amplitudes used to constrain $\gamma N \rightarrow \pi N$ fits
 - * Also, resonance BW parameters fixed from πN fits

<u>Legend</u> Black: PR15 vs. g13 w/o FSI correction Blue: PR15 vs. g13 (χ^2 /Data = 2.1) Red: MA27 vs. g13 (χ^2 /Data = 1.1)

SAID MA27 Fit

- ***** Simultaneous fit to all 4 γN channels to extract EM multipoles
 - ***** SAID $\pi N \rightarrow \pi N$ amplitudes used to constrain $\gamma N \rightarrow \pi N$ fits
 - * Also, resonance BW parameters fixed from πN fits

10	<u> </u>						
		Channal	SAID PR1	.5 (no g13)	SAID MA27 (w/ g13)		
8		Chaimer	# Data	χ²/Data	# Data	χ²/Data	
lata 9		$\gamma p \rightarrow p π^0$	25540	2.15	25540	2.17	
$\frac{6}{2}\chi^{4}$		$γp → nπ^+$	9859	2.39	9859	2.10	
2		үn → рп ⁻	3162	2.07	11614	1.42	
0		$\gamma n \rightarrow n \pi^0$	364	3.17	364	4.23	
(1.5 1.5 2.6 E (GeV)	Sum	38927	2.22	47377	2.17	

<u>Legend</u> Black: PR15 vs. g13 w/o FSI correction Blue: PR15 vs. g13 (χ^2 /Data = 2.1) Red: MA27 vs. g13 (χ^2 /Data = 1.1)

Jeffe

yn Multipole Amplitudes

- Where dominant resonance (N(1520)3/2⁻), all curves are similar *
- Where not (N(1720)3/2⁺ weak yn coupling), differences are starker *

$\gamma n \rightarrow N^*$ Helicity Amplitudes

- * Amplitudes at pole position (GeV^{-1/2}): First-ever determination[†]
 - Previous attempts only extracted modulus

Resonance	Coupling	MA27	GB12	BG2013	MAID2007	Capstick	PDG 2016
		modulus, phase					
$N(1440)1/2^+$	$A_{1/2}(n)$	$0.065 \pm 0.005, 5^{\circ} \pm 3^{\circ}$	0.048 ± 0.004	0.043 ± 0.012	0.054	-0.006	0.040 ± 0.010
$N(1535)1/2^{-}$	$A_{1/2}(n)$	$-0.055 \pm 0.005, 5^{\circ} \pm 2^{\circ}$	-0.058 ± 0.006	-0.093 ± 0.011	-0.051	-0.063	-0.075 ± 0.020
$N(1650)1/2^{-}$	$A_{1/2}(n)$	$0.014 \pm 0.002, -30^{\circ} \pm 10^{\circ}$	-0.040 ± 0.010	0.025 ± 0.020	0.009	-0.035	-0.050 ± 0.020
$N(1720)3/2^+$	$A_{1/2}(n)$	$-0.016 \pm 0.006, \ 10^{\circ} \pm 5^{\circ}$		-0.080 ± 0.050	-0.003	0.004	-0.080 ± 0.050
$N(1720)3/2^+$	$A_{3/2}(n)$	$0.017 \pm 0.005, \ 90^{\circ} \pm 10^{\circ}$		-0.140 ± 0.065	-0.031	0.011	-0.140 ± 0.065

[†]New Method: A. Svarc *et. al*, Phys. Rev. C **89**, 065208 (2014) Paul Mattione – CLAS Collaboration Meeting – June 14, 2017

21

$\gamma n \rightarrow N^*$ Helicity Amplitudes

- ★ Amplitudes at pole position (GeV^{-1/2}): First-ever determination[†]
 - Previous attempts only extracted modulus

Resonance	Coupling	MA27	GB12	BG2013	MAID2007	Capstick	PDG 2016
		modulus, phase					
$N(1440)1/2^+$	$A_{1/2}(n)$	$0.065 \pm 0.005, 5^{\circ} \pm 3^{\circ}$	0.048 ± 0.004	0.043 ± 0.012	0.054	-0.006	$0.040 {\pm} 0.010$
$N(1535)1/2^{-}$	$A_{1/2}(n)$	$-0.055 \pm 0.005, 5^{\circ} \pm 2^{\circ}$	-0.058 ± 0.006	-0.093 ± 0.011	-0.051	-0.063	-0.075 ± 0.020
$N(1650)1/2^{-}$	$A_{1/2}(n)$	$0.014 \pm 0.002, -30^{\circ} \pm 10^{\circ}$	-0.040 ± 0.010	0.025 ± 0.020	0.009	-0.035	-0.050 ± 0.020
$N(1720)3/2^+$	$A_{1/2}(n)$	$-0.016 \pm 0.006, \ 10^{\circ} \pm 5^{\circ}$		-0.080 ± 0.050	-0.003	0.004	-0.080 ± 0.050
$N(1720)3/2^+$	$A_{3/2}(n)$	$0.017 \pm 0.005, \ 90^{\circ} \pm 10^{\circ}$		-0.140 ± 0.065	-0.031	0.011	-0.140 ± 0.065

- * MA27 vs. SAID GB12: Large change for N(1650)
- ★ MA27 vs. PDG & BG2013: Large differences, ~agree within o's

[†]New Method: A. Svarc *et. al*, Phys. Rev. C **89**, 065208 (2014) Paul Mattione – CLAS Collaboration Meeting – June 14, 2017

$\gamma n \rightarrow N^*$ Helicity Amplitudes

- * Amplitudes at pole position (GeV^{-1/2}): First-ever determination
 - Previous attempts only extracted modulus

Resonance	Coupling	MA27	G B 12	BG2013	MAID2007	Capstick	PDG 2016
		modulus, phase					
$N(1440)1/2^+$	$A_{1/2}(n)$	$0.065 \pm 0.005, 5^{\circ} \pm 3^{\circ}$	0.048 ± 0.004	0.043 ± 0.012	0.054	-0.006	$0.040 {\pm} 0.010$
$N(1535)1/2^{-}$	$A_{1/2}(n)$	$-0.055 \pm 0.005, 5^{\circ} \pm 2^{\circ}$	-0.058 ± 0.006	-0.093 ± 0.011	-0.051	-0.063	-0.075 ± 0.020
$N(1650)1/2^{-}$	$A_{1/2}(n)$	$0.014 \pm 0.002, -30^{\circ} \pm 10^{\circ}$	-0.040 ± 0.010	0.025 ± 0.020	0.009	-0.035	-0.050 ± 0.020
$N(1720)3/2^+$	$A_{1/2}(n)$	$-0.016 \pm 0.006, \ 10^{\circ} \pm 5^{\circ}$		-0.080 ± 0.050	-0.003	0.004	-0.080 ± 0.050
$N(1720)3/2^+$	$A_{3/2}(n)$	$0.017 \pm 0.005, \ 90^{\circ} \pm 10^{\circ}$		-0.140 ± 0.065	-0.031	0.011	-0.140 ± 0.065

* Modulus uncertainties dramatically reduced:

% Uncertainty (Modulus)

Resonance	Coupling	GB12	BG2013	PDG 2016	MA27
$N(1440)1/2^+$	$A_{1/2}(n)$	8.3%	28%	25%	7.7%
$N(1535)1/2^{-}$	$A_{1/2}(n)$	10%	12%	27%	9.1%
$N(1650)1/2^{-}$	$A_{1/2}(n)$	25%	80%	40%	14%
$N(1720)3/2^+$	$A_{1/2}(n)$		62%	62%	38%
$N(1720)3/2^+$	$A_{3/2}(n)$		46%	46%	29%

23

- * N* spectrum: Strong force and hadronic structure
 - Role of quark correlations in the nucleon
 - * Need both γp and γn: Isospin decomposition of amplitudes

- * N* spectrum: Strong force and hadronic structure
 - Role of quark correlations in the nucleon
 - * Need both γp and γn: Isospin decomposition of amplitudes
- ***** CLAS g13 $\gamma n \rightarrow p\pi^-$ differential cross sections:
 - * 8428 data points in 157 E_y bins from 0.445 to 2.510 GeV
 - 10x statistics of g10, 3x SAID database at these energies
 - * Precision measurement: 3.4% scale σ, 12% for g12

- * N* spectrum: Strong force and hadronic structure
 - Role of quark correlations in the nucleon
 - * Need both γp and γn: Isospin decomposition of amplitudes
- * CLAS g13 γn \rightarrow pπ⁻ differential cross sections:
 - * 8428 data points in 157 E_y bins from 0.445 to 2.510 GeV
 - 10x statistics of g10, 3x SAID database at these energies
 - **+ Precision measurement:** 3.4% scale σ , 12% for g12
- *** GWU SAID** amplitude extraction:
 - ***** EM multipoles extracted (MA27), g13 χ^2 /Data = 1.1
 - ***** First-ever determination of $\gamma n \rightarrow N^*$ amplitudes

- * N* spectrum: Strong force and hadronic structure
 - Role of quark correlations in the nucleon
 - ***** Need both γp and γn: Isospin decomposition of amplitudes
- ***** CLAS g13 $\gamma n \rightarrow p\pi^-$ differential cross sections:
 - * 8428 data points in 157 E_y bins from 0.445 to 2.510 GeV
 - 10x statistics of g10, 3x SAID database at these energies
 - **+ Precision measurement:** 3.4% scale σ , 12% for g12
- *** GWU SAID** amplitude extraction:
 - ***** EM multipoles extracted (MA27), g13 χ^2 /Data = 1.1
 - ***** First-ever determination of $\gamma n \rightarrow N^*$ amplitudes
- Missing N*'s: Need more precision data (especially polarized!)

Reference

CEBAF Large Acceptance Spectrometer

N* and Δ Resonances

- * PDG: 18 well-established (****) nucleon resonances: 11 N*'s, 7 Δ's
 - * Most discovered through coupling to πN
 - * Many wide, overlapping: Difficult to distinguish
- * Measure spectra of N^{*'}s, Δ 's: Understanding of QCD in the baryon

Evidence for N* Resonances

- * N* status: Particle Data Group[†]
 - * 27 N* states (11 ****)
 - ★ Most evidence in пN
- ***** Much new evidence from γN
 - JLab (CLAS), SPring-8, ELSA, GRAAL, MAMI

LUZUIIU

****: Existence is certain
***: Existence is likely
**: Evidence is fair
*: Evidence is poor

			-								
Particle	J^P	overall	$N\gamma$	$N\pi$	$N\eta$	$N\sigma$	$N\omega$	ΛK	ΣK	$N\rho$	$\Delta \pi$
N	$1/2^{+}$	****									
N(1440)	$1/2^{+}$	****	****	****		***				*	***
N(1520)	$3/2^{-}$	****	****	****	***					***	***
N(1535)	$1/2^{-}$	****	****	****	****					**	*
N(1650)	$1/2^{-}$	****	****	****	***			***	**	**	***
N(1675)	$5/2^{-}$	****	****	****	*			*		*	***
N(1680)	$5/2^{+}$	****	****	****	*	**				***	***
N(1700)	$3/2^{-}$	***	**	***	*			*	*	*	***
N(1710)	$1/2^{+}$	****	****	****	***		**	****	**	*	**
N(1720)	$3/2^{+}$	****	****	****	***			**	**	**	*
N(1860)	$5/2^{+}$	**		**						*	*
N(1875)	$3/2^{-}$	***	***	*			**	***	**		***
N(1880)	$1/2^{+}$	**	*	*		**		*			
N(1895)	$1/2^{-}$	**	**	*	**			**	*		
N(1900)	$3/2^{+}$	***	***	**	**		**	***	**	*	**
N(1990)	$7/2^{+}$	**	**	**					*		
N(2000)	$5/2^{+}$	**	**	*	**			**	*	**	
N(2040)	$3/2^{+}$	*		*							
N(2060)	$5/2^{-}$	**	**	**	*				**		
N(2100)	$1/2^{+}$	*		*							
N(2120)	$3/2^{-}$	**	**	**				*	*		
N(2190)	$7/2^{-}$	****	***	****			*	**		*	
N(2220)	$9/2^{+}$	****		****							
N(2250)	$9/2^{-}$	****		****							
N(2300)	$1/2^{+}$	**		**							
N(2570)	$5/2^{-}$	**		**							
N(2600)	$\frac{1}{11/2^{-}}$	***		***							
N(9700)	12/9+			ale ale							

Status as seen in

⁺C. Patrignani *et al.* (PDG), Chin. Phys. C, 40, 100001 (2016)

30

N* Predictions: Diquark Model

- Alternative: Diquark model[†]
 - Correlated quark-pair
 - Less DF: Less N* states
- * "Missing" N*'s

Jefferson Lab

- * Quark correlations?
- Or N*'s couple weakly to measured channels? (Nπ)
- * Measure spectrum of N*'s
 - * Study QCD in baryons

Legend Black: Certain or likely: ****, *** Blue: Fair or poor: **, * Red: No evidence Green: Di-quark model

2200 2200 2100 2000 1900 1800 1700 1600 1500 1400 1300 1200 $N1/2^{+}$ $N3/2^{+}$ N5/2+ N7/2 N1/2. N5/2 N3/2 N7/2 N baryon model states

⁺J. Ferreti *et al.*, Phys. Rev. C **83**, 065204 (2011) Paul Mattione – CLAS Collaboration Meeting – June 14, 2017

$\gamma n \rightarrow p\pi^{-}$, Helicity

- * $\gamma N \rightarrow N^*$ Amplitudes: Helicity-dependent, very large errors[†]
- * g13: Measure γn \rightarrow pπ⁻ dσ/dΩ: Improve helicity amplitudes

$$\lambda = \boldsymbol{J} \cdot \hat{\boldsymbol{p}} = \boldsymbol{S} \cdot \hat{\boldsymbol{p}} \\ J_{\gamma} = 1, J_{N} = \frac{1}{2} \qquad \qquad |\mathcal{M}_{\gamma N \to N \pi}|^{2} \propto \sum_{\lambda_{i} \lambda_{f}} \left| \sum_{J^{P}, L, S, \text{etc.}} A_{\gamma N \to N \pi} \right|^{2}$$

$N^* o \gamma N$	$A^p_{\lambda=1/2}$	$A^n_{\lambda=1/2}$	$A^p_{\lambda=3/2}$	$A^n_{\lambda=3/2}$		
$N(1440) \frac{1}{2}^+$	-0.060 ± 0.004	0.040 ± 0.010				
$N(1520) \frac{3}{2}^{-}$	-0.020 ± 0.005	-0.050 ± 0.010	0.140 ± 0.010	-0.115 ± 0.010		
$N(1535) \frac{1}{2}^{-}$	0.115 ± 0.015	-0.075 ± 0.020				
$N(1650) \frac{1}{2}^{-}$	0.045 ± 0.010	-0.050 ± 0.020				
$N(1675) \frac{5}{2}^{-}$	0.019 ± 0.008	-0.060 ± 0.005	0.020 ± 0.005	-0.085 ± 0.010		
$N(1680)\frac{5}{2}^+$	-0.015 ± 0.006	0.029 ± 0.010	0.133 ± 0.012	-0.033 ± 0.009		

[†]C. Patrignani *et al.* (PDG), Chin. Phys. C, 40, 100001 (2016)

Paul Mattione – CLAS Collaboration Meeting – June 14, 2017

Jefferson Lab

Polarization Observables

- Combination of polarized beams, targets, and recoil polarization:
 16 observables
- Provide spin-dependent constraints for N* extraction

		Target and/or Recoil Polarization															
Dhahan Daam	Neither			Recoil		Target		Recoil & Target									
Photon Beam			x	у	z					x			у			z	
						x'	у'	z'	x'	у'	z'	х'	y'	z'	x'	у'	z'
Unpolarized				Ρ			Т		T _x		L _x		Σ		Tz		Lz
Linearly Polarized	σ	Σ	Ox	Т	Oz	Н	Р	G	Lz	Cz	Tz	Е		F	L _x	C _x	T _x
Circularly Polarized			C _x		Cz	F		Е		Oz		G		Н		O _x	

Reconstruction Efficiencies

- Needed new, sophisticated reconstruction efficiency studies
- * Select $\gamma d \rightarrow p\pi^{-}(p)$ events to study p, $\gamma d \rightarrow pp(\pi^{-})$ to study π^{-}
 - * Efficiency: See how often missing particles are reconstructed
 - Study how well simulation models CLAS efficiency
 - ***** Function of particle type, p, θ , φ , vertex-z

p Reconstruction Efficiency

- Efficiency: Low at edges, holes
- Cut: Where MC efficiency doesn't match experiment
- Minimum p = 330 MeV/c

π⁻ Reconstruction Efficiency

- ***** Efficiency: Low at edges, holes
- Cut: Where MC efficiency doesn't match experiment
- Minimum p = 100 MeV/c

Jefferson Lab

Proton Triggering Efficiency

- * g13: 2-sector trigger (Start-Counter x TOF)
- ***** Study $\gamma d \rightarrow pp\pi^-$ events, when each track in different sector
 - * Each track pair: If both fired trigger signal, study 3rd-track signal rate
 - ***** Function of particle type, p, TOF scintillator, φ
- Low efficiency for weak/dead TOF PMTs, TOF panel overlap
 - One PMT on each end of TOF scintillators

Triggering Efficiency: PMTs

- ***** TOF thresholds: Readout = 20 mV, pre-trigger = 100 mV
 - Left & right PMTs are summed for pre-trigger
- * Weak PMTs: Set to max voltage, gain often still too low
- ***** π's worse than protons: Much less dE/dx in scintillators
- * After study: Pre-trigger threshold reduced for g9b (FROST)

Compare Experiment, MC: p

- After cuts: $\gamma d \rightarrow p\pi^{-}(p)$ distributions match VERY closely *
 - Need to regenerate MC with measured cross section (Used SAID)

Primary sources of holes: Triggering & drift chamber inefficiencies Jefferson Lab

[†]Modeling FSI in $\gamma d \rightarrow pp\pi^{-}$

- ***** Must correct for FSI to extract $\gamma n \rightarrow p\pi^-$ from QF $\gamma d \rightarrow pp\pi^-$
 - Working with GWU & ITEP (Moscow)
- * $\gamma d \rightarrow pp\pi^- amplitude: \mathcal{M}_{\gamma d} = \mathcal{M}_{IA} + \mathcal{M}_{NN} + \mathcal{M}_{\pi N}$
 - * Leading terms: Impulse approximation (IA), NN FSI, πN FSI
 - * Fit constrained by SAID $\gamma N \rightarrow \pi N$, $NN \rightarrow NN$, $N\pi \rightarrow N\pi$
- ★ QF γd → ppπ⁻: Slow proton is spectator: $\mathcal{M}_{\gamma d}^{QF} = \mathcal{M}_{IA}^{(1)}$

[†]Modeling FSI in $\gamma d \rightarrow pp\pi^{-}$

- * 1st approximation: FSI \approx small & IA dominates: γ n similar to QF
 - ***** Relate $\gamma n \rightarrow p\pi^-$ to QF $\gamma d \rightarrow pp\pi^-$ via correction factors:

$$\frac{d\sigma_{\gamma d}^{\rm QF}}{d\Omega} \left(E_{\gamma}, \theta \right) = f_n \left(p_{\rm max} \right) R \left(E_{\gamma}, \theta \right) \frac{d\overline{\sigma}_{\gamma n}}{d\Omega} \left(\overline{E}_{\gamma}, \theta \right)$$

***** Where
$$R = R_P R_{FSI}$$
 and:

Lab

Jeffe

- ★ R_{FSI}: Corrects for FSI
- * R_P: Corrects for difference between IA, QF

*
$$f_n(p_{max})$$
: ≈ Fraction of n with p < p_{max}
* p_{max} = 200 MeV/c

$$R_{\rm FSI} = \left. \frac{d\sigma_{\gamma d}}{d\Omega_1} \right/ \frac{d\sigma_{\gamma d}^{\rm IA}}{d\Omega_1}$$

$$R_P = \left. \frac{d\sigma_{\gamma d}^{\rm IA}}{d\Omega_1} \right/ \frac{d\sigma_{\gamma d}^{\rm QF}}{d\Omega_1}$$

$$f_n\left(p_{\max}\right) = 4\pi \int_0^{p_{\max}} \rho\left(p\right) p^2 dp$$

***** Note
$$\overline{E}_{\gamma} \approx E_{\gamma}$$
 and $\overline{\sigma}_{\gamma n} \approx \sigma_{\gamma n}$ at low p_{max}

★ Difference: Target d → target virtual-n, deuteron wave function

⁺V. E. Tarasov *et. al*, Phys. Rev. C **84**, 035203 (2011) Paul Mattione – CLAS Collaboration Meeting – June 14, 2017

[†]Calculating R, $\gamma n \rightarrow p\pi^{-}$

- * Set R = 1, compute $\sigma_{\gamma n}$ (& $\mathcal{M}_{\gamma n}$) from quasi-free $\sigma_{\gamma d}$ data
- * Calculate R from CGLN amplitudes, using $\mathcal{M}_{\gamma n}$
- ***** Re-compute σ_{yn} , iterate until R converges

