CLASI2 First Experiment workshop June 13 2017

The CLASI2 Forward Tagger

M.Battaglieri, R.DeVita, A.Bersani, A.Celentano, R.Cereseto, E.Fanchini, S.Fegan, M.Osipenko, G.Ottonello, F.Parodi, R.Puppo, A.Trovato, V.Vigo INFN-GE

> G.Smith, D.Watts, P.Black, S.Hughes, J.Fleming, N.Zachariou University of Edinburgh

D.Attie, S.Aune, J.Ball, G.Charle, M.Defurne, M.Garcon, I.Mandjavidze, S.Procureur, M.Riallot, F.Sabatie, M.Vandenbroucke CEA-Saclay

> A.D'Angelo, A.Ciarma, L.Lanza INFN-RMTV

> > A.Filippi INFN-TO

M.Anderson, D.Glazier, D.Ireland, K.Livingston, D.Sokhan University of Glasgow

> K.Hicks, M.Camp, N.Klco Ohio University

> > C.Salgado, M.Lee Norfolk University

K.Giovanetti, H.Mann, I.Davenport, M.Yates James Madison University

N.Baltzell, S.Boiarinov, P.Bonneau, P.Campero, A,Hoebel, G.Jacobs, T.Lemon, B.Miller, E.Pasyuk, B.Raydo, S.Stepanyan, M.Ungaro, A.Yegnesvaran JLab

... et (many) al.

CLASI2 Forward Tagger FT

Quark and gluon confinement: hybrids and exotics

We propose to study the light meson spectrum in a photoproduction experiment using CLAS12 ★ Meson provide an easier access to inter-quark potential, strong interaction dynamics, and gluonic degrees of freedom
 ★ Photoproduction should be favorable to excite exotic quantum number and photon polarisation helps in extract the information suppressing the bg

JLab PAC41 granted A⁻ to E12-11-005 MesonEx proposal

- E12-11-005A Photoproduction of the Very Strangest Baryons on a Proton Target in CLAS12
- EI2-I6-003A Light meson decay
- E12-16-010 A Search for Hybrid Baryons in Hall B with CLAS12

Requirements:

 \star Large acceptance detector:

CLASI2

★ Intense, tagged, polarized photon beam in the energy range 5-10 GeV

CLASI2 Forward-Tagger

Quasi-real photoproduction with CLASI2 (Low Q² electron scattering)

$E_{scattered}$	0.5 - 4.5 GeV
θ	$2.5^{o} - 4.5^{o}$
ϕ	0° - 360°
ν	6.5 - 10.5 GeV
Q^2	$0.01 - 0.3 \text{ GeV}^2 (\langle Q^2 \rangle 0.1 \text{ GeV}^2)$
W	3.6 - 4.5 GeV

★ Electron scattering at "0" degrees (2.5^O - 4.5^O) low Q² virtual photon \Leftrightarrow real photon

★ Photon tagged by detecting the scattered electron at low angles High energy photons $6.5 < E_g < 10.5$ GeV

 \star Quasi-real photons are linearly polarized

Polarization ~ 70% - 10% (measured event-by-event)

★ High Luminosity (unique opportunity to run thin gas target!) Equivalent photon flux $N_v \sim 5 \ 10^8$ on 5cm H₂ (L=10³⁵ cm⁻²s⁻¹)

 \star Multiparticle hadronic states detected in CLASI2

High resolution and excellent PID (kaon identification)

High energy low Q2 photon beam in CLASI2!

The Forward Tagger for CLASI2

FT-Cal: PbWO₄ calorimeter

electron energy/momentum Photon energy (v=E-E') Polarization $\varepsilon^{-1} \approx I + v^2/2EE'$ INFN-GE, INFN-RM2, INFN-TO

FT-Hodo: Scintillator tiles

veto for photons
EdinburghU+JMU+NSU

FT-Trck: MicroMegas detectors

electron angles and polarization plane Saclay + OhioU

FT-Cal

Calorimeter + hodoscope + tracker

Electron energy/momentum $\delta v / v = \delta E' / (E-E')$ Photon energy (v=E-E') Polarization $\epsilon^{-1} \sim 1 + v^2 / 2EE'$

Requirements

* Radiation hard

* Good light yield

* Energy resolution

* Time resolution

* Light read-out (APD/SiPM)

FT-Cal Specs

* Crystals: 332 I5xI5x200 mm3 BTCP/SICCAS PbWO4 Type II

- * Light sensors: Hamamatsu LAAPD s8664-1010
- * FE electronics: FT-Orsay preamps
- * Working temperature: 0 °C, +18 °C
- * Energy range: 5 MeV (Threshold on single crystal) to 8 GeV
- * Energy resolution: $2.3\%/\sqrt{E(GeV)} \oplus 0.5\%$

FT-Hodo

Calorimeter + hodoscope + tracker

veto for photons

Requirements

* Good timing (<ns) for MIPs

- * High segmentation
- * 100% efficient for charged particles

Plastic scintillators tiles with WLS fibres coupled to SiPM

FT-Hodo Specs

* Segmented array, 2 layers of tiles to minimize photons misid
* Tiles: 74 30x30x15 mm2 + 42 15x15x7 mm3 ElJen 204 per layer

* WLS: (4x74 + 2x42)x2 = 380 d=1mm Kuraray K11

* Light sensors: Hamatsu S10362-33-100 3x3mm2, 100um SiPM

- * FE electronics: 232 channels FTh-Orsay preamps
- * Time resolution: < I ns

6

FT-Trck

Calorimeter + hodoscope + tracker Q²= 4 E E' sin² 9/2 Scattering plane

Requirements

* High pixel density (FW)
* 100-300 µm resolution
* Integrated in the CLASI2
base equipment

Sustain high rate, moderate resolution, low material budget: Micromegas

FT-Trck Specs

- * Two double layers of bi-face bulk Micromegas
- * Pitch: 500 μm
- * FE electronics: 3392 channels, same FE used for MCT
- * Services and slow controls shared with MCT
- * Spatial resolution: < 150 μ m

Expected angular resolution of FT-Trck Exploiting the solenoid kick a single tracker close to the FT suffices

FT current status

FT-Cal

FT-Hodo

JLab EEL building

• Inner W pipe used to hold the Moeller cone during KPP

• FT reassembled and sealed

FT interlocks

JLAB-DSG & SlowControls

Revision Date 2/08/2017

NI-cRIO for FT-Cal and FT-Hodo:

- Monitoring of temperature, humidity, nitrogen flow and chiller parameters
- HV and LV enable/disable functions
- Chiller enable/disable functions
- Full shutdown if unsafe conditions detected
- Siemens PLCs for FT-Trk
 - Monitoring of gas pressure and flows in inlet and outlet
 - Stop gas flow if overpressure or leak detected

Status:

- All hardware purchased and available
- Interlocks systems assembled and tested
- Controls integration in EPICS (slow control system) completed for cRIO interlocks

Hardware interlocks for all three FT detectors designed and implemented to ensure safe operation during data taking

CLASI2 Forward Tagger FT

FT-Hodo slowcontrol CS-Studio - -💒 fthDividerExpert.opi 🛚 💒 fthDividerNovice.opi 🛚 **Forward Tagger** Expert GUI Forward Tagger Basic GUI Expert Hodoscope Voltages **Board Temperature** Hodoscope Voltages Sel Chan Vcalc(V) Read Set Index Celcius 0 0 000 0.00 Board Temperature Chan Vcalc(V) Read Set Sel 0 001 0.00 24.8 Crate View Hodo Layer 1 View Hodo Layer 2 View 0 00 Index Celcius 000 0.00 0 0 0 01 16.8 002 0.00 001 0.00 0 00 24.8 0 003 0.00 0 02 24.1 16.8 002 0.00 0 01 0 24.3 004 0.00 0 03 003 0.00 0 02 24.1 0 0 005 0.00 04 24.6 004 0.00 03 24.3 0 0 006 0.00 0 05 24.8 24.6 005 0.00 0 04 0 007 0.00 0 24.8 06 006 0.00 0 05 24.8 07 24.8 Slot03,Top, HV01 007 0.00 0 24.8 0 06 Open 08 24.8 07 24.8 HV On/Off Vset Vmon 09 24.5 Slot03,Top, HV01 GUI Open 08 24.8 OFF 55.000 0.000 10 24.5 HV On/Off Vset Vmon 24.5 09 GUI 11 24.3 OFF 55.000 0.000 10 24.5 12 24.2 11 24.3 13 16.8 12 24.2 14 16.6 Select ID Driver Control 13 16.8 * 0 14 16.6 Select Chan Driver Control * 0 efaultChannels.dat 💕 Load data efaultChannels.dat 💕 efaultChannels.dat 💕 Load data **Reset Controller** Save data efaultChannels.dat 📂 Save data **Reset Controller** 4095 2000 4095 Click to select (Currently selected channel pulses in all views) min **Hu**2000 0 20 40 60 80 100 120 140 160 180 200 231 0 0 Channel 20 40 60 80 100 120 140 160 180 200 231 0 Channel Network Raw commands (expert) IP Addr: 129.57.86.85 Command: (40 char max) Netmask: 255.255.255.0 Gateway: 129.57.86.1 Response: (40 char max)

CLASI2 Forward Tagger FT

FT Diagnostic

Crystal "status" determined in real time for the analysis of output signal "noise"

- "healthy" channels identified by signal RMS in the pedestal region of 0.75-1.05 mV
- RMS<0.75 mV indicates channel is dead (bad preamp, no connection with APD, disconnected cable, ...)
- RMS>1.05 mV indicates issues with HV (APD on properly polarised)

FT-Cal LED Monitoring System

<u>e () lab12</u>

13

FT-Cal Cosmic ray calibration

Calibration performed using:

- external trigger scintillators
- self-triggering based on fADC (majority of pulses over threshold in a board above selectable value)

Analysis:

- For each crystal, select events with at least 4 crystals with signal above threshold among the adjacent crystals in the same column
- Integrate waveform in fixed range and extract waveform maximum
- Plot charge of amplitude and fit distribution to extract Landau peak position

FT-Cal Cosmic ray calibration

M.Battaglieri INFN-GE

Tested during December 2016 calibration challenge using pseudo-data (Pythia events at 10³⁴ luminosity):

- Select events with electron in CLASI2 forward detector
- Use event start time from electron as a reference
- Study the time distribution of hits in each crystal from fADC pulse analysis
- No need of information from other FT detectors

16

Dead channels

Final timing resolution ~200 ps, consistent with simulation smearing

Dead channels

Final timing resolution ~200 ps, consistent with simulation smearing

19

<u>e @lab12</u>

FT-Hodo Calibration

- Complete set of electronics one sensor board replaced in April
- Slow controls suite
- Timing fits in calibration software for individual channels

Gain from fit to single photoelectron spectrum

Number of photoelectrons

Landau fit to charge spectrum

Gaussian fit to timing difference $\Delta t = (t_{thin} - t_{thick})$

FT-Hodo charge2energy constants consistent with simulated ones with small systematics (3%) due the Landau parameterization

M.Battaglieri INFN-GE

CLASI2 Forward Tagger FT

FT in GEMC

Geometry

- correct z position
- correct FT-cal insulation and FT-Trk crates position
- Full FT-Hodo geometry (Edinburgh+Genova)
- Full FT-Trk geometry (M. Garcon)

FT hitprocess

- Digitization based on calibration constants read from CCDB
- FT-Cal and FT-Hodo tuned to match cosmic ray calibration data
- FT-Trk hit-process based on correct strip numbering and first estimates of the cluster size (M. Defurne and R. De Vita)
- Available in GEMC 4a.1.0

FT reconstruction

FT-Cal: shower leakage corrections:

- Deposited energy is less than incident particle energy because of finite size of the detector and readout
 - longitudinal containment (FT-Cal thickness = 20 cm ~ 25 r.l.)
 - lateral containment
 - readout threshold

22

CLASI2 Forward Tagger FT

3.0

4.0

5.0

Cluster Energy (GeV)

6.0

1.0

2.0

FT reconstruction

FT-Cal: shower leakage corrections:

- New correction for longitudinal leakage implemented and tested up to electron/photon energy of 10 GeV
- New correction dependent on cluster seed position under development:
 - Account simultaneously for both shower leakage and readout threshold

23

CLASI2 Forward Tagger FT

- S.Diehl (U Giessen)
- Full CLAS12 (+FT) GEANT4 sim/rec
- JPAC e-production amplitudes (V.Mathieu)
- AMPTOOLS

24

FT reconstruction

Reconstruction

FT-Cal:

- Read raw hits from hipo bank
- Read calibration constants from DB
- Create hits, converting from digitized info to E and T
- Reconstruct cluster and determining cluster E,T and pos

FT-Hodo:

- Read raw hit from evio bank
- Read calibration constants from DB
- Create hits, converting from digitized info to E and T
- Match hits in the hodoscope layers

FT-Track:

• started based on algorithm developed by G. Charles

FT-Match:

- Match reconstructed clusters with hits in hodoscope
- Output of final reconstructed particles

Code available in present COATJAVA distribution

FT Trigger simulation (S.Diehl at the HSWG meeting on Thur)

Schedule of remaining tasks

FT final assembly and test in the EEL building

- FT-Cal sealing
- FT-Cal + FT-Hodo ready for cosmic checkout
- Interlocks + Gas system tested in EEL building
- FT-Trck integration (interlocks + gas system)

Lab **EEL** building

May

June

FT detector ready to be installed in CLASI2

- FT installation in CLAS12
- Move the electronics to the Hall
- Move the FT to the Hall and integrate in CLASI2
- Take cosmic data to check the final configuration

JLab Hall-B

July

August/ September

FT detector ready to take data this fall!