CLAS12 TRIGGER UPDATE

Nick Markov, UCONN Valery Kubarovsky, JLAB

OUTLINE

- History of the problem
- Rate studies @ 11 GeV
- Rate studies @ 6 GeV
- Background generator
- Results
- Future plans

250 NS OF CLAS12 LIFE@10^35 (GEMC)

2 GeV electron in a background environment @10^35

HISTORY OF THE TOPIC

- Studies of the trigger rate in CLAS12:
 - Inclusive generator: code developed by S. Pisano based on work by M. Sargsyan, CLAS-NOTE 90-007 (1990) used for 11 GeV and 6 GeV event generation.
 - Background generator: 124000 electrons in 250 ns window on 5 cm target (provides luminosity of 10³⁵) with electromagnetic, optical and hadronic processes with both 12 GeV and 6 GeV beam.

HISTORY OF THE TOPIC

Threshold	Rate @ 1GeV threshold	Rate @ 1GeV threshold
11 GeV Inclusive	0.6 kHz	0.75 kHz
11 GeV background	12 kHz	9 kHz
6 GeV Inclusive	1.4 kHz	n/a
6 GeV background	13 kHz	n/a

No Event builder, old simulation and reconstruction

CLAS6 estimation: 1.7 kHz

Consistent results between different version of simulations 6 GeV simulation is consistent with CLAS6 data

- Large discrepancy between inclusive and background simulation was observed and reported;
- GEANT4 simulation of the background is unrealistic;
- M. Ungaro provide more intrinsic details on this subject in his talk.

CURRENT STUDIES

- Inclusive generator: code developed by S. Pisano based on work by M. Sargsyan, CLAS-NOTE 90-007 (1990) used for 11 GeV event generation
- 6 GeV and 11 GeV electrons are generated using inclusive generator
- Event builder is used to associate track with calorimeter and ultimately select good events (where track is included in the trigger)
- Rates with different trigger configuration are estimated

TRIGGER CONFIGURATIONS

1. Energy sum in EC

- HTCC+PCAL+ECAL
- HTCC: Nphe cut
- Total energy sum(PCAL,ECAL)
- 2. Cluster Reconstruction in EC
 - Reconstruction of clusters in PCAL and ECAL
 - Corrections on the light attenuation
 - Cut on the cluster energy sum(PCAL+ECAL)
- **3.** Track reconstruction in DC
 - Effect of the tracks in DC on the trigger rate

TRIGGER RATES

Energy sum in EC+PCAL

TRIGGER RATES

Cluster reconstruction in EC+PCAL

TRIGGER RATES

Cluster reconstruction in EC+PCAL + track in DC

DISCUSSION

- PCAL in not designed to work well with the the energy sum
- Sharp drop off of the rate with energy sum trigger with threshold
- Around 2 GeV rate with energy sum and clusters in calorimeter become practically the same in both 6 GeV and 12 GeV case
- Adding tracking to the trigger cuts the rate in about half in 6 GeV and 12 GeV cases. One possibility is different geometrical acceptance between DC and EC/PCAL.

DISCUSSION

Cluster + DC

Energy sum + DC

- Proportionality between energy deposition in calorimeters and track momentum seem to break at low electron momentum with energy sum;
- Setting threshold with energy sum will cut out significant amount of good high momentum events

SIGNAL TIMING

Very sharp peak in HTCC timing Complicated structure of EC/PCAL timing due to location of PMT readout

SUMMARY

- Event rates for inclusive events were estimated with 11 and 6 GeV electron beam with different trigger configuration;
- Timing of the signals in different detectors is studied;
- Estimated trigger rate is within the DAQ capabilities;
- Trigger CLAS12 note is in preparation.