

I D E A FUSION

Old Dominion University 2017

Validation of neutrino energy estimation using electron scattering data

Student Mariana Khachatryan Supervisor Lawrence Weinstein

Outline

The importance of energy reconstruction in neutrino oscillation experiments

□ Neutrino-nucleon Charged Current interactions

Different neutrino experiment detectors

Testing neutrino beam energy reconstruction methods with electron scattering CLAS e2a experiment data

Neutrino oscillations

 $\Delta m^2 L$

KamLAND, PRL 100, 221803 (2008)

CC quasi-elastic scattering

Charged Current (CC) Weak interaction mediated by W^{\pm} bosons

$$j_{\mu}^{\pm} = \overline{u} \frac{-ig_{W}}{2\sqrt{2}} (\gamma^{\mu} - \gamma^{\mu}\gamma^{5})u$$

 g_W – coupling strength

Electromagnetic current

 $j_{\mu}^{em} = \overline{u} \gamma_{\mu} u$ **Lepton scattering** $E_{\nu}^{kin} = \frac{2M\varepsilon + 2ME_1 - m_l^2}{2(M - E_1 + |k_1| \cos \theta)}$ $\varepsilon \approx 20$ MeV binding energy
M-nucleon mass m_1 outgoing lepton mass k_1 – lepton three momentum θ – lepton scattering angle

MINERvA

3D view

Scintillator based detector Study: Neutrino oscillations nuclear effects nuclear structure functions.

Schematic view of MINERvA

MicroBoone 3D view

Liquid Argon Time Projection Chamber. Measure: ♦ Low energy neutrino cross sections

Schematic view of MicroBoNE

CLAS detector package

3D view

TOF Counters

to have 'neutrino like' data!

Cerenkov Counters

Electron scattering data

Have analyzed ⁴He, ¹²C, ³He, ⁵⁶Fe 4.461, 2.261 GeV e2a experiment data Other data available ³He, ⁴He, C, Fe 1.1 GeV

Good (e,e') and (e,e'p) events with e and p PID, vertex and fiducial cuts and W<2

	2.2GeV (e,e')	2.2GeV (e,e'p)	4.4GeV (e,e')	4.4GeV (e,e'p)
3He	28986574	11528930	3906223	1405454
4He	46335555	16671452	7756786	2635998
12C	28964300	10653575	4707597	1494004
56Fe	1488407	523741	393716	121371

4.461 GeV analysis

$oldsymbol{ heta}$ and $oldsymbol{arphi}$ distributions

 π^{-}

Number of events with pions and protons

E2a ¹²C 4.461 GeV

Subtracting undetected pions

(e,e') Cuts No π_+ , π_- and no photons coming from π_0 decay

(e,e'p) E_{Calorimetric}

 $E_{Calorimetric} = E_{e'} + T_{p} + E_{Binding}$ $E_{e'} - energy of scattered electron$ $T_{p} - kinetic energy of knock-out proton$ $E_{binding} - binding energy difference$

Three P_{\perp}^{miss} regions

0 GeV/c - 0.2 GeV/c 0.2 GeV/c - 0.4 GeV/c 0.4 GeV/c and higher

2.261 GeV analysis

Subtracting undetected pions

(e,e') Cuts No π_+ , π_- and no photons coming from π_0 decay

(e,e'p) E_{Calorimetric}

 $\begin{array}{l} {\sf E}_{Calorimetric} = {\sf E}_{e'} + {\sf T}_p + {\sf E}_{Binding} \\ {\sf E}_{e'} - energy \ of \ scattered \ electron \\ {\sf T}_p - kinetic \ energy \ of \ knock-out \ proton \\ {\sf E}_{binding} - Difference \ between \ binding \\ energies \ of \ A \ and \ A-1 \ nuclei \end{array}$

Three P_{\perp}^{miss} regions

0 GeV/c - 0.2 GeV/c 0.2 GeV/c - 0.4 GeV/c 0.4 GeV/c and higher

Fraction of events reconstructed to within 5% of the beam energy

	2.2 GeV			4.461 GeV		
	E _{rec} (e,e')	E _{rec} (e,e'p)	E _{calorimetric} (e,e'p)	E _{rec} (e,e')	E _{rec} (e,e'p)	E _{calorimetric} (e,e'p)
³ He	34%	41%	55%	26%	32%	42%
⁴ He	25%	30%	46%	20%	23%	33%
¹² C	22%	26%	37%	16%	20%	28%
⁵⁶ Fe	17%	20%	23%	12%	16%	18%

Conclusion

1. First use of electron data to test neutrino energy reconstruction algorithms

- use zero-pion cuts to enhance quasi-elastic event selection
- just scattered lepton
 - \diamond used in Cherenkov-type neutrino detectors
- total energy of electron plus proton
 - \diamond used in calorimetric neutrino detectors
- improved by a transverse momentum cut to better select QE events

2. Only 12-55% of events reconstruct to within 5% of the beam energy

better for lighter nuclei and lower energies

3.Serious implications for neutrino oscillation measurements4.Tremendous interest in the neutrino community5.Analysis note in preparation, aiming for PRL6.Future work:

- extend analysis to more targets and energies
- compare to neutrino event generators
- proposal to PAC 45

Cuts

No π_+ , π_- and no photons coming from π_0 decay

¹²C

⁵⁶Fe

(e,e') E_{rec}

Cuts

No $\pi_{\scriptscriptstyle +}$, $\pi_{\scriptscriptstyle -}$ and no photons coming from $\,\pi_{\scriptscriptstyle 0}\,$ decay

¹²C

⁵⁶Fe

(e,e') E_{rec}

Cuts (e,e'p) $E_{calorimetric}$, (e,e') E_{rec} and (e,e'p) E_{rec} No π_+ , π_- and no photons coming from π_0 decay $E_{Calorimetric} = E_{e'} + T_p + E_{Binding}$ 12C 56Fe

