
Sample Testing with the  
Quadrupole Resonator 

A way to obtain RF results over a wide 
parameter range 



Motivation 

• Power consumption in a superconducting cavity is 
proportional to its surface resistance RS 

• RS shows a complex behavior on external parameters, such as 
temperature, frequency, magnetic and electric field 
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• Some open questions: 

• Origin of the residual resistance 

• Origin of the Q-Slope/Q-drop 

• Stronger Q-Slope of Niobium films compared to bulk niobium 

• Influence of magnetic and electric field 

• Influence of the surface properties 
Courtesy of T. Junginger 



Motivation 

The Quadrupole Resonator enables  
RF characterization of small samples  

over a wide parameter range 



RESONANT RING λ/2 RESONATOR 



I



I

current Excitation:


I

Sample 
Current  

carrying ring Image 
current Sample 

Current  
carrying wire 

Design Ideas for the Quadrupole 
Resonator 

Courtesy of T. Junginger 

Sample Radius for 400MHz 

Pillbox Cavity R = 0.56m 

Resonant Ring R > 0.12m 

λ/2-Resonator R independent of f 
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Design of the Quadrupole Resonator 

Courtesy of T. Junginger 
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Design of the Quadrupole Resonator 

Courtesy of T. Junginger 

DIPOLE RESONATOR 
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Design of the Quadrupole Resonator 

Courtesy of T. Junginger 
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Design of the Quadrupole Resonator 

• Sample diameter: 75mm 

• The sample needs to be EB-
welded to the sample cylinder 

• Bulk niobium and copper 
samples are available 

Niobium Sample Copper Sample Niobium Cylinder 

Stainless Steel Flange 



Field Configuration & Features 

• Resonant frequencies: 
400MHz, 800MHz, 1.2 GHz 

• Almost identical magnetic 
field configuration 

• Ratio between peak 
magnetic and electric field 
proportional to frequency 
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Courtesy of T. Junginger 

1 E. Mahner et al. 
 Rev. Sci. Instrum., Vol. 74, No. 7, July 2003 
2 T. Junginger et. al  
 Rev. Sci. Instrum., Vol. 83, No. 6, June 2012 
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Quadrupole Resonator 

Sample Surface 

The Calorimetric Technique 

Courtesy of T. Junginger 
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Quadrupole Resonator Thermometry Chamber 
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The Calorimetric Technique 

• Measuring the temperature on the 
sample surface 

• Precise Calorimetric measurements over 
wide temperature range  
 

Temperature 
Sensors 

Courtesy of T. Junginger 

Sample Surface 



time 

Temperature  

Bath  
Temperature 

Temperature 
of Interest 

P
D

C
,1

  

P
D

C
,2

 
P

R
F 

  

Power 

DC on RF on 

≈60 s ≈40 s 

dSHRPPP
Sample

SurfaceDCDCRF  2

2,1, 21
dSH

PP
R

Sample

DCDC

Surface






2

2,1, )(2

 

Temperature 
Sensors 

DC Heater 

H
eat Flo

w
 

The Calorimetric Technique 

Courtesy of T. Junginger 
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The Calorimetric Technique 

Courtesy of T. Junginger 

Measured directly 

• Measurement of transmitted power Pt 

• Pt=c∫H2ds, c from computer code 



Flux Trapping 



Flux Trapping 
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Flux Trapping 

DC Coil 
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First test with trapped flux 

• Bulk niobium sample 

• Reactor grade, RRR ≈ 65 

• Standard BCP, no bake out 

• Rres ≅ 11.5 nΩ 



RS(B) at 400 MHz for different T 



RS(B) at 400MHz, 2-4K 

• Convex curve for 
T ≤ 2.5K 

• Concave curve for 
T ≥ 3.5K 

• Different loss 
mechanisms 
dominant 



RS(B) at 400 MHz, 4-7K 
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Q slope parameter 𝜸 

𝛾 ≠ 𝛾 𝑇  



Trapped Flux at 400MHz and 4K 



Frequency dependence of trapped flux 



Summary 

• Resonant Frequencies: 400MHz, 800MHz, 1200MHz 

• Broad temperature range above the bath temperature is 

available 

• Measurement of RS(B, T, 𝑓), penetration depth, quench 

field (high T), thermal conductivity, RRR 

• Separate losses due to magnetic and electric field 

• Study the influence of trapped magnetic flux 

 



Outlook 

• Production of HIPIMS Sample (CERN) 

 

• Current bulk Nb sample: Diffusion of N to produce 
NbN (INFN) 

 

• MgB2 (AASC) – currently surface (CERN) and 
composition (HZB) measurements; DC critical field 
measurements (CERN) being planned 


