

Inner workings of the 120°C baking effect studied by positron annihilation

A. Romanenko

Fermilab, USA

C. Edwardson, P. Coleman University of Bath, UK

- Applied to consistently remove the high field Q-slope in EP/large grain BCP cavities
- Lowers electron m.f.p. as deduced from fits to R_s(T) using BCS framework
- Drastically modifies near-surface order parameter as observed in muSR
- Effect on BCS surface resistance extends to >~ 300 nm deep
- Effect on HFQS can be eliminated by ~20 nm material removal

Thermometry and cutout

Positron annihilation Doppler broadening spectroscopy

Doppler Broadening

$$S = N_p/N_{total}$$
$$S_{defect} > S_{defect-free}$$

$$\mathbf{W} = (\mathbf{N}_{w1} + \mathbf{N}_{w2}) / \mathbf{N}_{total}$$

- S parameter corresponds to positron annihilation with valence electrons, W-> core electrons
- S is sensitive to open-volume defects, W-to chemical surrounding at the annihilation site
- Increase in S parameter indicates presence of vacancy defects

Depth profiling of vacancy concentration

- Change positron energy E -> change stopping depth
- Measure S(E), W(E) -> depth profile of vacancies

- High concentration of vacancies in hot and "cold" spots
 - Consistent with ~10⁻³
 at.%
 - Difference due to the presence of peaks at particular depths?
- Baking decreases vacancy concentration significantly
 - Same depth profiles after 120C for all 3 samples

310-10 -> Hot spot with strong HFQS losses 240-10 -> "Cold" spot with less HFQS losses 3X0-10 -> No HFQS losses spot from baked cavity

Similar on plain samples

- Vacancies can be formed in concentrations by far (30 orders of magnitude) exceeding thermodynamic equilibrium
 - Enabled by the presence of interstitial H and can happen during: chemical treatments, furnace treatments
- Discovered in 1993
 - Y. Fukai and N. Okuma: Jpn. J. Appl. Phys. Vol. 32 (1993)
 - Phys. Rev. Lett. Vol. 73 (1994)
 - Since then found in many M-H systems including niobium!

Distribution of H in Nb

C. Antoine et al, SRF'91

A. Romanenko and L. V. Goncharova, Supercond. Sci. Tech. 24 (2011) 105017

T. Tajima et al, SRF'03,

There exists a hydrogen-rich layer within the first several 10s of nms, which is NOT removed even after furnace treatment

Hydrogen-induced vacancies in Nb

29 orders of magnitude higher concentration of vacancies possible in the presence of hydrogen as compared to thermal equilibrium

PAS results – 120C baking

P. Hautojarvi et al, Phys. Rev. B, Vol. 32, Num. 7, 1985

O. K. Alekseeva et al, Physica Scripta. Vol. 20, 683-684, 1979

Typical fast cooldown of a cavity (FNAL)

All H will precipitate into hydrides within the layer L if nucleation centers exist

For slow cooldown L > 3 mm allowing to collect H from all the wall thickness. This (bulk supply) can be changed by 600-800°C making not enough H to form large hydrides (Q-disease)

Cooldown – unbaked cavity

Mean free path increases – determined by Hydride-Hydride distance

Cooldown – 120C baked cavity

14

$$T = 300 K$$

Mean free path stays low – determined by H-H distance

- Model does not require diffusion of any impurities during 120C - only vacancies
 - Near-surface vacancies diffuse to sinks and annihilate during 120C
 - Presence/absence of vacancy-H complexes as nucleation centers for hydrides matters for the precipitation state

Proximity effect

16

De Gennes and Hurault, Phys. Lett. 17, 3 (1965)

A. Fauchere and G. Blatter, Phys. Rev. B, 56, 21 (1997)

$$H_b(T=0) \approx \frac{1}{6} \frac{\Phi_0}{\lambda_N d}$$

$$H_b(T \gg T_A) \approx \frac{\sqrt{2}}{\pi} \gamma(T, \Delta) \frac{\Phi_0}{\lambda_N d} e^{-d/\xi_N(T)}.$$

$$\xi_N = \frac{\hbar v_F}{2\pi kT} \qquad T_A = \frac{\hbar v_F}{2\pi k d}.$$

 $\xi_N \approx 800 \text{ nm for Nb at T} = 2K$

If
$$d = 10 \text{ nm} => T_A = 166 \text{ K}, T << T_A$$

At H > H_b – no Meissner screeing – proximity-induced SC is destroyed

 From our experiments with hydrides (see SRF Materials 2012 talk)

 $d \sim 100 \text{ nm } (150 \text{ K hold}) => d \sim 100 \text{ nm} \Leftrightarrow H_b \sim 1 \text{ mT}$

 $- => in the limit of T<<T_A if H_b=100 mT=> d~1 nm$

Unbaked cavity – HFQS losses

- Nanohydrides lose proximityinduced superconductivity completely => HFQS
- Change of order parameter ∆(z) with field at H< H_b->MFQS?

We can obtain $F_H(H_a)$ from the distribution of diameters d since $H_b = H_b(d)$: (i.e. if $H_b \sim 1/d$ at $T << T_A$)

- Saturation of the HFQS at higher fields (similar to Q-disease)
 - Need more RF power to check (preliminary data next slide)
- Introduce vacancies into baked cavity should recreate locally high field Q-slope
 - Irradiation experiments on the cavity to be done soon
- Small hydrides should be observed directly at T<~150K
 - TEM ongoing
 - Small angle X-ray scattering scheduled

Conclusions

- Positron annihilation data suggests major role of vacancies in the 120C baking effect
- Precipitation of hydrides within surface layer may explain the mean free path effect of 120C bake
 - Without involving any impurity diffusion
- Nanohydrides must be present in the RF layer of SRF cavities if nucleation centers exist
 - There is always enough H and time during cooldown
- Proximity effect on nanohydrides can explain the high field Q-slope
- Is medium field Q-slope also a consequence of proximity on hydrides?
 - Or on suboxides?

- A. Grassellino, F. Barkov, Y. Trenikhina, L. Cooley FNAL
- H. Padamsee Cornell