

Event Display Development

A look at present, future and requirements

Dmitry Arkhipkin, STAR @ BNL

Outline

• Intro

- STAR Web-based Event Display v1
- Requirements, Planning, Design
 - Target Audience and Use-Cases
 - Requirements & Features
 - Technology Overview
- STAR Web-based Event Display v2
- Summary, Outlook, Discussion

Intro: what needs to be visualized?

For the discussion on geometry modelling, see the presentation of J.Webb!

While all building blocks seem to be well-understood, precise Use-Cases and Requirements are very important for the Event Display development!

Detector Geometry

- raw detector geometry as produced by simulations package
- serialized detector geometry as exported by experiment's framework

Raw Detector Data

- TPC hits (3D dots), EMC hits (blocks), Silicon pads (planes) – both raw and serialized
- Reconstructed Objects
 - Tracks, Vertices, V0s, EM showers
- Service Information
 - momentum, charge, energy deposition, coordinates, size

Existing Displays at STAR: desktop

Coin3D (Qt / OpenGL)

- mature, feature-rich, desktop-based, cross-platform, tightly integrated with STAR software framework, full debugger support
- Mainly driven by the the need of MC and reconstruction experts
- aging, harder to maintain with years, so ROOT/TEve display becomes a viable alternative

ROOT / TEve (TGeo-based)

- desktop-based event display based on ROOT / TEve
- Evolving need, aligned with the community direction
- reduced set of dependencies compared to Coin3D, native integration with ROOT
- TEve is backed by ROOT community EIC Meeting, JLAB, May 1st, 2017

Existing Displays at STAR: Live Display

- Live Event Display v1 (WebGL, since ~2010)
 - web-based event display based on Three.js and WebGL – no software to install at client side!
 - support fast event and geometry load, optimized for performance
 - used by Online crew, professors and PR managers
- v1 is a part of STAR Online Services
 - web versions of RunLog, ShiftLog, DAQ monitor, Db Plots, Phonebok, Shift Crew, Expert List, Event Display(s), Metadata Collectors etc

https://online.star.bnl.gov/aggregator/

...also available via Google Play as an app!

EIC Meeting, JLAB, May 1st, 2017

J

STAR: Event Display v1

existing tool at hand

STAR Event Display v1

STAR

Live data from the DAQ / Event Pool, or pre-recorded events

Event Display

STAR Collaboration (c) 2013-2016

Zoomable, rotating STAR classic Event Display view http://online.star.bnl.gov/aggregator/livedisplay/ EIC Meeting, JLAB, May 1st, 2017 BROOKHAVEN NATIONAL LABORATORY

v1: 3D Support

Left-Right (LR) view for 3D TVs, Right-Left (RL) view for cross-eyed view

Google Cardboard, VR sets - we support all of them..

http://online.star.bnl.gov/aggregator/livedisplay/

v1: New detectors are easy to implement

EIC detector concept, BNL http://www.eicug.org/display/ SPHENIX detector, BNL https://www.sphenix.bnl.gov/display/

Component Diagram for v1

Online / Live Event Display

Next Gen Event Display

planning for the Event Display **v2**

Target Audience (who?)

Use-Cases (what?)

Simu & Reco Experts

- detector geometry design and visualization
- mc event data visualization
- service information visualization

Online Experts

- reco event visualization
- early problem detection

- Data Analysis crowd
 - reco event visualization
 - detector internals visualization
 - illustrations for papers and posters
- Public Outreach
 - STEM teaching visuals (professors)
 - Illustrations for media, news, public events, agencies

Requirements (how?)

Simu & Reco Experts

 precise geometry and reconstructables, precise camera positioning, MC framework-specific meta-data support, debugger integration, fast, high learning curve is okay

Online Experts

 fast, interoperable, easily extensible, framework-independent, platform-independent, learning curve is irrelevant

Data Analysis

 feature-rich, interactive, ability to produce high-resolution images, negligible learning curve is a must

Public Outreach

 must cause "wow effect", platform-independent, web-based, negligible learning curve is a must

Planning: Summary

Based on the outlined use-cases and requirements:

- Simu & Reco Experts will likely still use framework-specific Event Displays most of the time due to the development needs - access to the detailed meta-data of the specific simulations framework, which is virtually impossible to generalize - backed by some compatible generic Event Display for interoperability purposes
- Online, Data Analysis and Public Outreach groups seem likely to be happy with a *generic* Event Display which must have the following properties: *framework-independent*, *platform-independent*, *easy to learn and use*, *fast*

Event Display v2

early development, functional prototype

Moving Towards Event Display v2

- Based on the outlined requirements, we need to implement:
 - browser-based display
 - wide Geometrical Shape types support
 - GDML / AGML import (common format)
 - increase interactivity: enhanced service information, volume manipulation

Why browser-based?

- future-proof codes, use newest JavaScript standard (ES6+)
- forward compatible, universal user interfaces
- general trend in the community towards web UIs as primary interfaces
- Software as a Service (SAAS) paradigm is way to popular to ignore
- answers all requirements listed earlier!

Some Use-Cases already covered!

Geometry Primitives

Name Geant 3 Display Box Geo.box BOX TRD1 Trapezoid, X Geo.trd1 Trapezoid, X/Y Geo.trd2 TRD2 TRAP General Trapezoid Geo.trap Geo.tube TUBE Tube TUBS Tube Segment Geo.tubs CONE Cone Geo.cone **Cone Segment** CONS Geo.cons SPHE Sphere Geo.sphe PARA Parallelepiped Geo.para **PGON** Polygone Geo.pgon **PCON** Polycone Geo.pcon Elliptical Tube ELTU Geo.eltu HYPE Hyperboloid Geo.hvpe Twisted Trapezoid GTRA Geo.gtra Geo.ctub CTUB Cut Tube Torus Geo.torus Ellipsoid Geo.ellipsoid(SPHE) Elliptical Cone Geo.elcone (CONE?) Tetrahedra Geo.tet Arbitrary 8 vertices Geo.arb8 Paraboloid Geo.paraboloid Extrusion Geo.xtru Simple Extrusion Geo.sxtru Hollow Sphere Geo.orb (=SPHE) (=Geo.box) (=GTRA?) Tw. Box Tw. Gen. Trapezoid (=Geo.trd2) (=GTRA?) Tw Tube Segment (=Geo.tubs) **Tessellated Solid** Geo.tessellated

ROOT/TGeo TGeoBBox TGeoTrd1 TGeoTrd2 TGeoTrap TGeoTube TGeoTubeSea TGeoCone TGeoConeSea **TGeoSphere** TGeoPara TGeoPgon TGeoPcon TGeoEltu TGeoHype TGeoGtra TGeoCtub TGeoTorus (=scaled sphere) (=scaled cone?) (=TGeoArb8?) TGeoArb8 **TGeoParaboloid** TGeoXtru (=TGeoSphere)

(=TGeoGtra?)

(=TGeoGtra?)

GDML VecGeo Geant 4 G4Box box Box (=G4Trd)(=Trd)(=trd) G4Trd trd Trd G4Trap Trapezoid trap (=G4Tubs) (=tube) (=Tube) G4Tubs tube Tube (=G4Cons) (=Cone) (=cone) G4Cons cone Cone G4Sphere Sphere sphere G4Para Parallelepiped para G4Polyhedra polyhedra Polyhedron G4Polycone polycone Polycone G4EllipticalTube eltube (=scaled Tube) G4Hvpe Hype hvpe G4TwistedTrap twistedtrap CutTube G4CutTubs cutTube G4Torus torus Torus

G4Torus torus Torus G4Ellipsoid ellipsoid (=scaled Orb) Common subset is still to be agreed upon so Event Display must implement all shapes!

G4ExtrudedSolid	xtru	(=GenTrap)
		SExtru
G4Orb orb		Orb
G4TwistedBox tv	vistedbox	
G4TwistedTrd tw	istedtrd	
G4TwistedTubs		twistedtubs
G4TessellatedSc	lid	tessellated

Recent v2 activity

- STAR Event Display Conversion started in April 2017:
 - Source codes being rewritten according to JS ES6 standard. Transpile with babel, package with webpack, NW.js, Cordova
 - **Geometry Shapes** => standalone library, depends on Three.js
 - basic G3 subset revised, coordinate system fixed and validated
 - NEW G3+TGeo+G4+GDML+VecGeom shapes added (100%)
 - NEW Boolean solids support
 - NEW GDML import => standalone library (dep on three.js)
 - **Event Display** app is being rewritten with JQ Mobile UI library
 - better support of newest mobile devices, better UI
- Validation & Stress-testing: TBD, not expected at alpha stage
- Implementation of GDML support creates solid ground for a generic Event Display: cross-experiment usage is now possible!

http://www.star.bnl.gov/~dmitry/eventdisplay2/

Event Display v2: why GDML?

At the moment, GDML is a commonly supported geometry export format of all involved parties. V2 may use any other format if suggested to...

v2: GDML import implementation

- Definitions:
 - constants, expressions, variables, positions, rotations, scales, units
 - quantities, matrices, G4 constants
- Materials:
 - Density => volume transparency
 - G4 materials
- Solids:
 - all solids implemented including boolean solids, ellipsoids, elliptical cones, twisted shapes, tessellated solids, scaled solids
- Boolean solids:
 - union, subtraction, intersection
 - multiUnion

• Structure:

- volumes and physvolume, hierarchy, placement, assemblies, loops over physvols
- loops over materials and volume definitions, replicated volumes, parametrized volumes, volume divisions
- Setup:
 - worldref, multiple worldref
- Extensions:
 - auxillary tags: visibility, color
 - multiple file support

V2 fully understands ROOT's GDML output, and goes beyond that subset...

v2: Early Development Tests

http://www.star.bnl.gov/~dmitry/eventdisplay2/

v2: complete geometry imported from GDML

http://www.star.bnl.gov/~dmitry/eventdisplay2/

	DISPLAY	
	Geometry Import	GEOMETRY SELECTION
	Events Import	EVENT SELECTION
Rotate, Zoom, Clip		VOLUME SETUP
		CLIP SETUP
P Als		CAMERA SETUP
Laboration		VISIBILITY
		Basic Controls More to be added!
Clipped STAR Hall overview: detector, beam optics, calorimeters		
	volumes: 4683	

v2: STAR detector MC geometry is highly detailed

http://www.star.bnl.gov/~dmitry/eventdisplay2/

v2: Event Support: tracks and hits

Events loaded separately from geometry description

v2: Web, mobile, desktop app – you name it

single source code => multiple build targets, platforms, devices

Architecture: Event Display v2

v2 is at alpha stage, beta expected this summer (TBC)

- Graphics performance has to be optimized:
 - pack shapes into single WebGL calls
 - produce less vertices per geometrical shape
 - reduce number of segments for complex shapes
 - allow basic material type in addition to Lambert material
- Error handling needs to be substantially improved
 - no tests for invalid shapes
 - no warnings upon unimplemented features
- GDML standard implementation is incomplete
 - missing matrices, G4 defaults, loops over materials and volumes, parametrized volumes
- Web Interface is being revised
 - Many additional control knobs to be added
 - Validated on Android 5+, Web (Firefox, Chrome) only for now..

Classic paradox: remaining 20% of work will consume 80% of time

Geometry design hints to allow best visuals

- Always follow the hierarchical model:
 - do not attach mixed elements of different subsystems to the same root level or mother volume, keep them properly separated
 - use "assembly" to group detector components (i.e. east/west parts of the calorimeter) or detector groups (all tracking detectors)
 - if thousands of elements have to be placed, use envelope containers with proper material
- Provide multiple worldrefs (entry points in GDML)
 - Complete hall + detector, detector without hall elements
 - Calorimeter groups
 - all trackers, barrel tracker, inner tracker
- Inspect your material densities carefully
 - gas-like materials are not displayed
 - liquid-like materials become semi-transparent
 - dense materials are opaque

Summary and Outlook

- Use-Cases and Requirements for a generic Event Display were presented for discussion
- Implementations of STAR Event Displays were presented, with possible extention of web-based Event Display (v2) beyond STAR to future experiments to come
 - Standalone, interoperable gdml-aware Event Display would be useful not only for EIC or STAR only, but for all HEP/NP community
- Possible future: remote access to computational resources using JS-based terminal
 - similar to Jypiter Notebook, but using MQ to disentangle web server and clients/servers
 - utilizing Event Display v2 for geometry and events visualization
 - possibly utilizing jsROOT for histograms and graphs

Thank You! Questions? Comments?