
Detector Description and
Geometry Frameworks in

HEP/NP Experiments
Jason Webb

presented on behalf of the STAR experiment

1

Introduction
The geometry model is central to the physics programs of HEP/NP experiments,
touching on all aspects of the data analysis

● Developed and supported throughout the entire lifecycle of the experiment
● It represents a significant investment in time spent developing, tuning and validating
● While there has been some consolidation, the field has not converged on either a

common framework or approach

This talk will

● Present a broad (not exhaustive, possibly biased) overview of requirements on detector
description and geometry frameworks

● Make some general remarks about approaches that are typical in the field
● And examine some of the specific frameworks that are available

 but first,... 2

Set the WABAC machine for the year 2000...
The field is undergoing a paradigm shift.

● Old technologies (FORtran, PAW, hbook, GEANT3) are being retired
● New technologies (C++, ROOT, Geant 4) are gaining acceptance

The LHC experiments are planning how to represent
complex geometry models consistently over a multi-decade
time scale, without certainty of what the underlying
technology will be. Two major trends emerge

● Alice develops VMC, adopts ROOT/TGeo. Uses C++ classes
as its primary representation of the geometry model.
Abstraction at the geometry navigation level.

● ATLAS, CMS and LHCb develop XML-based models for their
geometry. Abstraction at the geometry description level. 3

Requirements (from the viewpoint of the software)
● The detector description should provide

○ Complete definition of materials, geometry, physics, detector mapping, etc… What gets
specified highly dependent on the target application.

○ Abstraction from concrete geometry model (e.g. GEANT3, Geant 4, ROOT/TGeo, etc…)
which enables path to adopting new models

● The detector description should provide the single source of geometry
information to applications with conflicting needs

○ Simulation -- requires highly detailed description of everything -- materials and their properties,
placement, detector identity, physics and propagation parameters, etc…

○ Event Reconstruction -- may trade off detail in passive volumes for navigation speed /
precision alignment of high resolution detectors required

○ Visualization -- material properties relatively unimportant. Level of detail required depends on
the intended usage, e.g. event visualization for P.R. versus debugging track reconstruction.

○ Data analysis -- may require detail as complicated as for simulation or as simple as
visualization, and everything in between.

4

Requirements (from the viewpoint of the developer)
Q: Who is the developer? Research scientist? Graduate student? Professor who already has
something working in GEANT 3.17 and doesn’t understand why he can’t just plug his code in?

● Low overhead for the developer -- hard enough to learn good geometry design (and more important)
○ Easy to learn and apply / minimize number of languages to be learned / learn it once
○ Minimally the framework shouldn’t get in the way
○ Ideally encourages good organization of the geometry model.

Q: What stage has the experiment reached? Conceptual design? Evaluating different detector
technologies and reconstruction algorithms? Experimental data taking? Long term
maintenance / archiving?

● Must support multiple versions of a detector (some form of version control…)
○ Flexible -- R&D needs to be able to easily reconfigure a detector model
○ Stable -- Production needs to be able to select from fixed of known detector models
○ Different experiments may end up different places on a continuum between the two.

5

GDML -- Geometry Description Markup Language
● Pure XML description of the detector geometry

○ Iteration, constants, variables supports the algorithmic creation of detectors (no branching)
○ Support for large number of shape primitives (G4 compatible)
○ Provides an expression of the geometry, without providing a framework to realize the concrete

geometry model. i.e. you’ll have to write the code to import GDML yourself, …
■ Or use ROOT and/or G4 to input geometry. But you will still need to apply ...

○ Auxiliary information (hints) can be used to pass physics configurations (eg tracking cuts,
medium parameters, etc…)

■ But there is no standard for this, and the only two concrete geometry modelers which
support (ROOT and G4) do not make use of this feature

● Stable code base
● Primarily useful as an exchange format, would need new development

6

GEMC -- GEant4 MC
● Builds a Geant 4 geometry model from many possible sources

○ GDML, CAD files, ASCII format, perl...

● Used at JLAB for CLAS12 and EIC studies

I’ve only scraped the surface of the documentation / presentations. Mention for
completeness.

7

8

DD4Hep -- Detector Description for HEP
Emerged from LHCb and International Linear Collider efforts. ATLAS and CMS frameworks
similar in approach.

XML

Python

C++

user

● Compact XML description input into C++ (python) constructors
○ Adds the concept of “repetition”, “layers”, and “envelopes” to geometry model

● Persistent in-memory geometry model based on ROOT/TGeo plus extensions
● Large toolkit for detector modeling

○ Includes bindings for G4 hit scoring / ships with a G4 application
○ Simplified surface representation for reco, produced from full model
○ Alignment support and event display under development
○ CAD files can be used as input

Generic
(ROOT/TGeo)
Representation

Extensions

Geant 4

GDML

Reco/Surface

...

9

DD4Hep -- Detector Description for HEP
Emerged from LHCb and International Linear Collider efforts. ATLAS and CMS frameworks
similar in approach.

XML

Python

C++

user

Pros
● Actively maintained and developed, widely used
● Simple detectors can be implemented in just the XML
● Syntax encourages good organization of the geometry

model (hierarchy)
● Supports reconstruction w/ surface model and alignment

Generic
(ROOT/TGeo)
Representation

Extensions

Geant 4

GDML

Reco/Surface

...

Cons
● Users need to learn the XML syntax and C++/python
● Geometry cannot be expressed in XML alone

○ Developers must keep the XML and constructors
synchronized… requires discipline

● No branching in XML, so detector versioning requires
many XML files and/or logic in ctors

● CAD model import useful for rapidly integrating new detector models and creating cpu bottlenecks during R&D

AgML

G3BuildFORtran

10

AgML -- Abstract Geometry Modeling Language
Developed from the Advanced GEANT Interface (Agi) used in early ATLAS
development and STAR production until 2011.

C++user

Steering

TGeoBuild
ROOT/TGeo

GEANT 3

● AgML (XML) description is the single and complete source of geometry information
○ Complete language, supporting loops, variables, constants, data structures, branching, hits, and construction
○ AgML sources are parsed and translated into compilable code, linked into shared libraries
○ ROOT and/or G3 geometry created at run time from the shared libraries

● Simulations use G3 geometry
● Reconstruction code takes ROOT/TGeo as input, and translates/simplifies into native tracker format
● Support for misalignment in development

AgML

Geant 4, GDML, & other
models can be easily
supported

... ...
Parser

11

AgML -- Abstract Geometry Modeling Language

Pros
● Actively developed and maintained
● Demonstrated track record in production environment
● The full geometry model, including versioning of the

STAR detector from run-to-run, is defined in AgML
● Geometry versions fixed at compile time -- tagged and

released with our software libraries -- ensuring
consistency across 17 years and 83 distinct versions

● Language syntax captures the problem domain:
Materials, shapes defined within volumes, which are
also responsible for creation / placement of daughters

Cons
● Changes to the geometry model require compilation
● Lacks support for input of other formats (however…)

Developed from the Advanced GEANT Interface (Agi) used in early ATLAS
development and STAR production until 2011.

AgML

AgML

G3BuildFORtran

C++user

Steering

TGeoBuild
ROOT/TGeo

GEANT 3

AgML

Geant 4, GDML, & other
models can be easily
supported

... ...
Parser

geom.root

geom.C

12

FairROOT

user

class Detector

 : FairDetector {

...

}

geom.ASCII

Common development coming out of GSI for Fair experiments, and widely used
beyond. Very similar to the Alice approach, and collaborating with them. Used in the
eRHIC / EIC studies.

ROOT/TGeo

G3 VMC application

G4 VMC application

GENFIT track reco

Fair geometry is part of a comprehensive framework supporting simulation, reconstruction and
analysis. User defines detectors and modules inheriting from FairGeo base classes. Multiple paths to
defining geometry

● Read in from ASCII text format (HADES), ROOT macro or ROOT file containing the geometry
● Implement C++ classes inheriting from FairGeo base classes (volume, material, etc…)

Simulation, reconstruction, etc… support by ROOT/TGeo model

Visualization

13

FairROOT
Common development coming out of GSI for Fair experiments, and widely used
beyond. Very similar to the Alice approach, and collaborating with them. Used in the
eRHIC / EIC studies.

Pros

● Actively maintained and developed, widely used
● Flexible, able to import multiple formats. Simple

detectors can be implemented in ASCII, more
complicated w/ ROOT macros or C++.

● Part of a tightly integrated system

Cons

● No abstraction of the detector description
● Detector description does not encourage good design
● Diverse input files complicates the task of the

maintainers, and…
● Geometry model can be split between the input file and

the detector class.

geom.C

user

class Detector

 : FairDetector {

...

}

geom.ASCII

geom.root

ROOT/TGeo

G3 VMC application

G4 VMC application

GENFIT track reco

Visualization
geom.root

14

Concluding Remarks (remember the disclaimer)

● Different frameworks approach usability issues differently. Support for multiple input
formats and/or CAD, or a single feature-enriched detector description language

○ My take: experiment benefits from large user base using a common description -- larger pool
of developers to maintain, extend, debug. Also simplifies support of retired detector models.

● Each framework has the capability leverage new technologies which become available
○ Abstraction layer can be changed to adapt to the underlying geometry library
○ My take: Agi/AgML has made such a transition without disrupting support for data production

.
● R&D greatly benefits from and production absolutely requires a reproducible versioning

scheme. This requires disciplined procedures on the part of the code maintainers.
○ My take: this can and should be supported by the geometry framework. DD4hep provides

some support. AgML provides a workable solution.

15

Concluding Remarks (remember the disclaimer)

There are several detector description and geometry frameworks available, each
capable of supporting a detector R&D program followed by experimental data
taking and production.

Coalescing around one of these approaches would have the benefit of building a
community of developers who could work efficiently, together, to advance the
scientific vision of an EIC detector.

if all you have is a hammer,

everything looks like a nail.

16

