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Introduction
The geometry model is central to the physics programs of HEP/NP experiments, 
touching on all aspects of the data analysis

● Developed and supported throughout the entire lifecycle of the experiment
● It represents a significant investment in time spent developing, tuning and validating
● While there has been some consolidation, the field has not converged on either a 

common framework or approach

This talk will

● Present a broad (not exhaustive, possibly biased) overview of requirements on detector 
description and geometry frameworks

● Make some general remarks about approaches that are typical in the field
● And examine some of the specific frameworks that are available

  but first,... 2



Set the WABAC machine for the year 2000...
The field is undergoing a paradigm shift. 

● Old technologies (FORtran, PAW, hbook, GEANT3) are being retired
● New technologies (C++, ROOT, Geant 4) are gaining acceptance

The LHC experiments are planning how to represent 
complex geometry models consistently over a multi-decade 
time scale, without certainty of what the underlying 
technology will be.  Two major trends emerge

● Alice develops VMC, adopts ROOT/TGeo.  Uses C++ classes 
as its primary representation of the geometry model.  
Abstraction at the geometry navigation level.

● ATLAS, CMS and LHCb develop XML-based models for their 
geometry.  Abstraction at the geometry description level. 3



Requirements (from the viewpoint of the software)
● The detector description should provide

○ Complete definition of materials, geometry, physics, detector mapping, etc…  What gets 
specified highly dependent on the target application.

○ Abstraction from concrete geometry model (e.g. GEANT3, Geant 4, ROOT/TGeo, etc… ) 
which enables path to adopting new models

● The detector description should provide the single source of geometry 
information to applications with conflicting needs

○ Simulation -- requires highly detailed description of everything -- materials and their properties, 
placement, detector identity, physics and propagation parameters, etc…

○ Event Reconstruction -- may trade off detail in passive volumes for navigation speed / 
precision alignment of high resolution detectors required

○ Visualization -- material properties relatively unimportant.  Level of detail required depends on 
the intended usage, e.g. event visualization for P.R. versus debugging track reconstruction.

○ Data analysis -- may require detail as complicated as for simulation or as simple as 
visualization, and everything in between.
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Requirements (from the viewpoint of the developer)
Q: Who is the developer?  Research scientist?  Graduate student?  Professor who already has 
something working in GEANT 3.17 and doesn’t understand why he can’t just plug his code in?

● Low overhead for the developer -- hard enough to learn good geometry design (and more important)
○ Easy to learn and apply / minimize number of languages to be learned / learn it once
○ Minimally the framework shouldn’t get in the way
○ Ideally encourages good organization of the geometry model. 

Q: What stage has the experiment reached?  Conceptual design?  Evaluating different detector 
technologies and reconstruction algorithms?  Experimental data taking?  Long term 
maintenance / archiving?

● Must support multiple versions of a detector (some form of version control…)
○ Flexible -- R&D needs to be able to easily reconfigure a detector model
○ Stable -- Production needs to be able to select from fixed of known detector models
○ Different experiments may end up different places on a continuum between the two.
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GDML -- Geometry Description Markup Language
● Pure XML description of the detector geometry

○ Iteration, constants, variables supports the algorithmic creation of detectors (no branching)
○ Support for large number of shape primitives (G4 compatible)
○ Provides an expression of the geometry, without providing a framework to realize the concrete 

geometry model.  i.e. you’ll have to write the code to import GDML yourself, …
■ Or use ROOT and/or G4 to input geometry.  But you will still need to apply ...

○ Auxiliary information (hints) can be used to pass physics configurations (eg tracking cuts, 
medium parameters, etc…) 

■ But there is no standard for this, and the only two concrete geometry modelers which 
support (ROOT and G4) do not make use of this feature

● Stable code base
● Primarily useful as an exchange format, would need new development 
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GEMC -- GEant4 MC
● Builds a Geant 4 geometry model from many possible sources

○ GDML, CAD files, ASCII format, perl...

● Used at JLAB for CLAS12 and EIC studies

I’ve only scraped the surface of the documentation / presentations.  Mention for 
completeness.
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DD4Hep -- Detector Description for HEP
Emerged from LHCb and International Linear Collider efforts.  ATLAS and CMS frameworks 
similar in approach.

XML

Python

C++

user

● Compact XML description input into C++ (python) constructors
○ Adds the concept of “repetition”, “layers”, and “envelopes” to geometry model

● Persistent in-memory geometry model based on ROOT/TGeo plus extensions
● Large toolkit for detector modeling

○ Includes bindings for G4 hit scoring / ships with a  G4 application
○ Simplified surface representation for reco, produced from full model
○ Alignment support and event display under development
○ CAD files can be used as input

Generic 
(ROOT/TGeo)
Representation

Extensions

Geant 4

GDML

Reco/Surface

...
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DD4Hep -- Detector Description for HEP
Emerged from LHCb and International Linear Collider efforts.  ATLAS and CMS frameworks 
similar in approach.

XML

Python

C++

user

Pros
● Actively maintained and developed, widely used
● Simple detectors can be implemented in just the XML
● Syntax encourages good organization of the geometry 

model (hierarchy)
● Supports reconstruction w/ surface model and alignment

Generic 
(ROOT/TGeo)
Representation

Extensions

Geant 4

GDML

Reco/Surface

...

Cons
● Users need to learn the XML syntax and C++/python
● Geometry cannot be expressed in XML alone

○ Developers must keep the XML and constructors 
synchronized… requires discipline

● No branching in XML, so detector versioning requires 
many XML files and/or logic in ctors

● CAD model import useful for rapidly integrating new detector models and creating cpu bottlenecks during R&D



AgML

G3BuildFORtran
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AgML -- Abstract Geometry Modeling Language
Developed from the Advanced GEANT Interface (Agi) used in early ATLAS 
development and STAR production until 2011.

C++user

Steering

TGeoBuild
ROOT/TGeo

GEANT 3

● AgML (XML) description is the single and complete source of geometry information
○ Complete language, supporting loops, variables, constants, data structures, branching, hits,  and construction
○ AgML sources are parsed and translated into compilable code, linked into shared libraries
○ ROOT and/or G3 geometry created at run time from the shared libraries

● Simulations use G3 geometry
● Reconstruction code takes ROOT/TGeo as input, and translates/simplifies into native tracker format
● Support for misalignment in development

AgML

Geant 4, GDML, & other 
models can be easily 
supported

... ...
Parser
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AgML -- Abstract Geometry Modeling Language

Pros
● Actively developed and maintained
● Demonstrated track record in production environment
● The full geometry model, including versioning of the 

STAR detector from run-to-run, is defined in AgML
● Geometry versions fixed at compile time -- tagged and 

released with our software libraries -- ensuring 
consistency across 17 years and 83 distinct versions

● Language syntax captures the problem domain: 
Materials, shapes defined within volumes, which are 
also responsible for creation / placement of daughters

Cons
● Changes to the geometry model require compilation
● Lacks support for input of other formats (however…)

Developed from the Advanced GEANT Interface (Agi) used in early ATLAS 
development and STAR production until 2011.

AgML

AgML

G3BuildFORtran

C++user

Steering

TGeoBuild
ROOT/TGeo

GEANT 3

AgML

Geant 4, GDML, & other 
models can be easily 
supported

... ...
Parser



geom.root

geom.C
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FairROOT

user

class Detector 

  : FairDetector {

...

}

geom.ASCII

Common development coming out of GSI for Fair experiments, and widely used 
beyond.  Very similar to the Alice approach, and collaborating with them.  Used in the 
eRHIC / EIC studies.

ROOT/TGeo

G3 VMC application

G4 VMC application

GENFIT track reco

Fair geometry is part of a comprehensive framework supporting simulation, reconstruction and 
analysis. User defines detectors and modules inheriting from FairGeo base classes.  Multiple paths to 
defining geometry

● Read in from ASCII text format (HADES), ROOT macro or ROOT file containing the geometry
● Implement C++ classes inheriting from FairGeo base classes (volume, material, etc…)

Simulation, reconstruction, etc… support by ROOT/TGeo model

Visualization
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FairROOT
Common development coming out of GSI for Fair experiments, and widely used 
beyond.  Very similar to the Alice approach, and collaborating with them.  Used in the 
eRHIC / EIC studies.

Pros

● Actively maintained and developed, widely used
● Flexible, able to import multiple formats.  Simple 

detectors can be implemented in ASCII, more 
complicated w/ ROOT macros or C++.

● Part of a tightly integrated system

Cons

● No abstraction of the detector description
● Detector description does not encourage good design
● Diverse input files complicates the task of the 

maintainers, and…
● Geometry model can be split between the input file and 

the detector class.

geom.C

user

class Detector 

  : FairDetector {

...

}

geom.ASCII

geom.root

ROOT/TGeo

G3 VMC application

G4 VMC application

GENFIT track reco

Visualization
geom.root
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Concluding Remarks (remember the disclaimer)

● Different frameworks approach usability issues differently.  Support for multiple input 
formats and/or CAD, or a single feature-enriched detector description language

○ My take: experiment benefits from large user base using a common description -- larger pool 
of developers to maintain, extend, debug.  Also simplifies support of retired detector models.

● Each framework has the capability leverage new technologies which become available
○ Abstraction layer can be changed to adapt to the underlying geometry library
○ My take: Agi/AgML has made such a transition without disrupting support for data production

.
● R&D greatly benefits from and production absolutely requires a reproducible versioning 

scheme.  This requires disciplined procedures on the part of the code maintainers.
○ My take: this can and should be supported by the geometry framework.  DD4hep provides 

some support.  AgML provides a workable solution.
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Concluding Remarks (remember the disclaimer)

There are several detector description and geometry frameworks available, each 
capable of supporting a detector R&D program followed by experimental data 
taking and production.  

Coalescing around one of these approaches would have the benefit of building a 
community of developers who could work efficiently, together, to advance the 
scientific vision of an EIC detector.



if all you have is a hammer,

everything looks like a nail.

16


