2.3 GeV Mollers

Bradley Yale Spring 2017 Collaboration Meeting 05/04/2017

Moller Generator

- Moller generator (egs5)
 - /u/group/hps/production/mc/egs5/moller_v3.exe
- Saves Moller events from the subroutine
 - hps-mc/egs5/egs/egs5_moller.f
- Generator cuts:
 - E > 10 MeV
 - Theta_y > 5mrad

Preliminaries

- HPS-jar: 3.11-SNAPSHOT (updated 03/31/2017)
- File locations:

Pure (.slcio: "dst" -> "recon" in the path):

/cache/mss/hallb/hps/production/postTriSummitFixes/dst/moller/2pt3/3.11-20170331/molv3_5mrad_10to1_HPS-PhysicsRun2016-Nominal-v5-0-fieldmap_3.11-20170331_run7984_singles0_*

Data (run 7984 Moller skim, pass0):

/cache/hallb/hps/physrun2016/pass0/skim/dst/moller/hps_007984.*_moller_R3.9.root

2.3 GeV Luminosity (normalization)

Different from WBT (500k bunches)

- MC Pure Mollers
- Lumin = (num_files) * (74 scatterers/atom) * (2 * 10⁶ bunches) * (2500 e⁻/bunch) * (4.062 * 10⁻⁴ atoms/cm/barn) * (6.306 * 10⁻² cm)

• Data • Lumin = $74 * (1 + 2^{Prescale}) * (FCup/q_e) * (4.062 * 10^{-4} \text{ atoms/cm/barn}) * (6.306 * 10^{-2} \text{ cm})$ FCup = 759002.3917 nCRun 7984 (gated)

Moller Cross Section Model (Messel & Crawford)

- ${E, E_0} = energy of {scattered, incident} electron$
- $\{T, T_0\}$ = kinetic energy $\{E m, E_0 m\}$
- $\gamma = E_0/m$
- $\beta = \nu/c$ • $r_0 = 1.2 * 10^{-13} cm$ $\frac{1}{\chi_0} \frac{d\sigma(E)}{dE} = \frac{2\pi r_0^2 m}{\beta^2 T_0^2} \left[C_1 + \frac{1}{\varepsilon(E)} \left(\frac{1}{\varepsilon(E)} - C_2 \right) + \frac{1}{\varepsilon'(E)} \left(\frac{1}{\varepsilon'(E)} - C_2 \right) \right]$
- $\varepsilon(E) = T/T_0$
- $\varepsilon'(E) = 1 \varepsilon$
- $C_1 = [(\gamma 1)/\gamma]^2$
- $C_2 = (2\gamma 1)/\gamma^2$

Generated Moller Cross Section (1.056 GeV)

Generated Moller Cross Section (2.3 GeV)

Generated Moller Cross Section (1.05 vs. 2.3 GeV)

Generated vs. Recon (1.056 GeV)

Generated vs. Recon (2.3 GeV)

SLIC (uncut MC Particles)

SLIC (MCP momentum: 0.2 - 1.8 GeV)

SLIC (MCP momentum: 0.6 - 1.6 GeV)

SLIC (MCP momentum: 1 - 1.3 GeV)

Readout (MCP momentum: 1 - 1.3 GeV)

These events get rejected at the readout level, before tracks are assigned. What are these clusters like?

Readout (MCP momentum: 1 - 1.3 GeV)

What are these clusters like?

Cluster vs. Track (edge)

Cluster vs. Track (fiducial)

Track endpoints after y-matching cut SLIC MC particles P[0.6, 1.6 GeV] 100₁ 598 Entries -110.4 Mean x 80 ECal position Mean y 1.051 Std Dev x 30.12 60 10543 Entries : 100 Std Dev y 31.45 XMéan -137.41 40 XRms : 33.138 50 YMean -1.6384 20 YRm's 38.510 0 OutOfRange: 4725 10⁻¹ -20 -50 -40 -100 -60 -200 -150 -100 -50 50 100 0 10-2 -80 –100<u>∟</u> –200

-150

-100

-50

50

0

100

–100<u>∟</u> –200

-150

-100

-50

50

100

0

It looks like electrons passing through the ECal hole are creating low-E hits/clusters, while being assigned tracks

Checking Kinematics

- So the 2.3 GeV "Moller gap" in momentum is likely caused by midenergy electrons (~1.2 GeV) missing the ECal, but still depositing enough energy in nearby edge crystals to get a track
- Forcing a track-cluster match in y (<10mm) as a temporary solution, what other effects does this have?

2.3 GeV Moller Selection (preliminary)

- Beamspot constrained Moller Candidates (improved the E/P ratio for 1.056 GeV)
- GBL Tracks
- Singles0 trigger (Pairs0 had low statistics in data)
- Cluster Coincidence < 1.7 ns (used for 1.056 GeV)
- Theta1 + Theta2 < 50 mrad (from pure MC)
- 2 GeV < Momentum1 + Momentum2 < 2.5 GeV

Prelim. Selection (w/10mm y-matching cut)

Prelim. Selection (w/10mm y-matching cut)

Prelim. Selection (unmatched vs. matched)

Mass fits (very preliminary)

Sebouh's Moller Selection and Mass Fits

- single0 trigger
- ▶ both track fit χ^2 /d.o.f. < 5
- ▶ both tracks doca < 1.5 mm
- both tracks p < 1.75 GeV
- track time difference < 2 ns $(\approx 2\sigma_{t_track})$
- ▶ *p*_{total} between 1.75 GeV and 2.6 GeV
- ▶ only one cluster; $x_{\text{cluster}} < -80 \text{ mm}$
- no positrons

Cuts into WAB tail

Sebouh's Moller Selection and Mass Fits

Summary

- Currently, cluster and track positions/energies are not correctly matched for edge hits, particularly around the corners of the e-hole
 - This effect is more dramatic for 2.3 GeV, with increased bend along edge
- Poor clusters with artificially low energy, are assigned high-momentum tracks
 - Can this be corrected? It should be affecting non-Moller events as well
- MC/Data normalizations look good so far
- Current "best" 2.3 GeV Moller mass resolutions for MC/Data: 2.11%/2.79%
 - Need to properly check/normalize these events
 - If correct, much better than for 1.056 GeV (MC/Data = 1.319MeV/1.557MeV = 6%/7.5%)
 - 1.056 GeV: 1.5% difference in MC/Data resolution, 2.3 GeV: < 1% difference?