Monte Carlo Status

Bradley Yale

Spring 2017 Collaboration Meeting 05/04/2017

MC Status Summary

- MadGraph5 is now used for all tridents
- A more efficient background ("tritrig-wab-beam") is available for acceptance/reach studies, made by artificially raising the trident rate
- Tuples for FEE, Mollers, and tridents are now being generated at recon, along with the output slcio/DST files
- The most recent Monte Carlo (all detectors) is in "production/rotationFix", named for a tweak in the event processing before SLIC
- Scripts and software needed to run Monte Carlo are now in a git repository

MC Generator types

Monte Carlo events come from several different generators:

- Egs5 (scattered beam, Mollers)
 - Events are generated only using egs5
 - HPS target parameters are set (thickness, current)
- MadGraph (tri, tritrig, wab, ap, TM)
 - Events are generated with MadGraph
 - Scattering within the HPS target is then handled using egs5
 - MadGraph cross sections used to mix events with egs5 beam events
- Geant4 (hadrons)
 - A macro is set up and run using an xml script:

/u/group/hps/production/mc/EngRun2015Scripts/stdhep/hadrons.xml

MC Components from egs5 (egs5 generation -> .stdhep output)

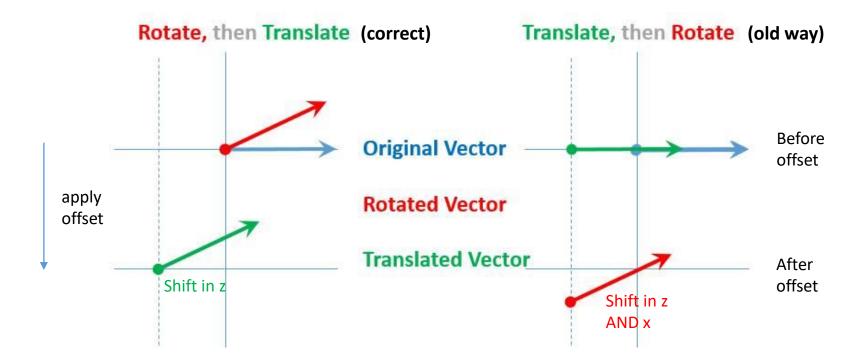
- Scattered Beam (egs5, beam_v5)
 - Saves all events passing the following cuts:
 - Photon theta_y > 4 mrad
 - Electron energy > Ebeam*0.005
 - Electron energy < Ebeam*0.6 and Electron theta > 15 mrad
- Mollers (egs5, moller_v3)
 - Saves after-target events from Moller subroutine if:
 - Electron energy > 10 MeV
 - Electron theta > 5 mrad
 - May also save photons/positrons from the event

2 versions of MadGraph

- MadGraph5 (all tridents)
 - Tritrig (full diagram. Unbiased tridents without sum cut is unstable)
 - ESum cut > ~Ebeam/2
 - RAD (radiative only, no exchange term)
 - BH (Bethe-Heitler only, no exchange term)
- MadGraph4
 - wab (wide-angle bremsstrahlung)
 - A' signal (and anything else made using this generator)

MC Production Chain

- After generation and any further processing with egs5, the remaining simulation steps are:
 - SLIC
 - The background mixing using MadGraph cross sections, and the 30.5 mrad beam offset happens BEFORE this step
 - This is also when most .lhe events get converted to .stdhep (via egs5)
 - Scattering of lhe events is simulated within a target volume by egs5 before offsets are applied
 - Scripts that perform the things in this step are in hps-mc/mc_scripts/slic/
 - Readout
 - Non-XS-mixed pure signals (tritrig, A') are spaced out by 250 blank events to avoid pileup before this step (org.hps.users.meeg.FilterMCBunches)
 - Standard Clustering + Triggering procedures are then applied via HPS-java
 - Scripts that perform this step are in hps-mc/mc_scripts/readout/
 - Recon
 - Standard track Finding + Fitting + Vertexing in HPS-java
 - Scripts that perform this step are in hps-mc/mc_scripts/recon/


- All .lhe (MadGraph) events are
 - Processed through egs5 (.lhe -> .stdhep)
 - Target thickness and beam current are set, as it is for scattered beam generation
 - After this, any tridents without a parent are given a 622 ('stdhep/add_mother')
- "Rotated" about y, and moved in z by -5mm (stdhep/beam_coords)

 $vtx_x' = vtx_x * \cos(\theta) + vtx_z * \sin(\theta) \qquad px' = px * \cos(\theta) + pz * \sin(\theta)$ $vtx_z' = vtx_z * \cos(\theta) - vtx_x * \sin(\theta) \qquad pz' = pz * \cos(\theta) - px * \sin(\theta)$

- Vertex positions are then sampled within a beamspot of user-defined Gaussian widths: $\sigma_x = 0.3 \ mm \ \sigma_y = 0.03 \ mm$
- "Poissonized" (stdhep/merge_poisson)
 - Events sampled from a Poisson distribution, based on MadGraph integrated cross section (must be correct!)

Recent MC Change: "rotationFix"

• Recent change in Pre-SLIC rotation/translation order

• Will avoid a slight beamspot shift in -x

- Poisson Sampling procedure
 - Takes an input stdhep file, and writes a random # of events into a new stdhep file, sampled from a Poisson distribution. These events get merged with beam events
 - This Poisson distribution is weighted according to the MadGraph integrated cross section and calculated luminosity

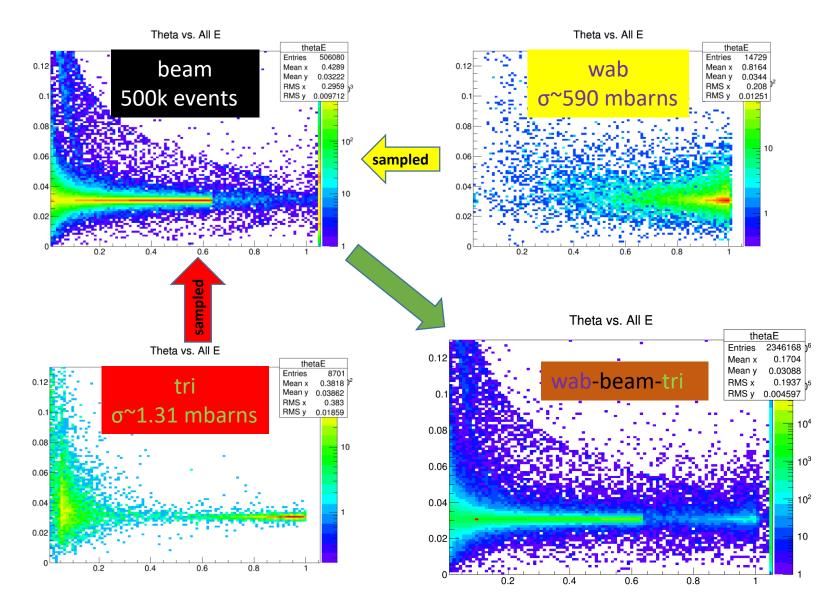
density

 $= 6.306 * 10^{-2} atoms/(cm * barns)$

bunchsize(I) = 625 (50nA), 2500 (200nA)

 $thickness = 0.0004062 \ cm$

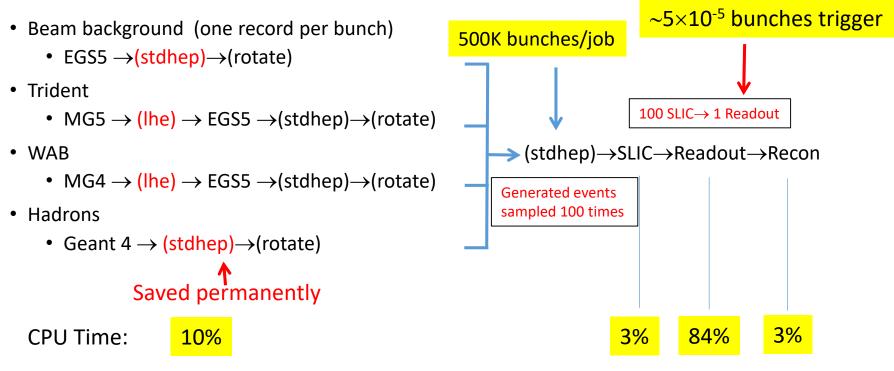
of sampled events =
$$gsl_ran_poisson(r, \mu) \xrightarrow{probability}_{distribution} \frac{\mu^r e^{-\mu}}{r!}$$


 μ = mean #events per sampled event

- $= luminosity * \sigma$
- = *density* * *thickness* * *bunchsize* * σ
- 1 bunch = 2ns of beamtime

• 500k bunches per background file => 1ms per file

• Typical wab-beam-tri sample (10k SLIC files): 5 Billion bunches = 10 sec.


- Each beam file is randomly sampled into 100 files using 100 different seeds
 - .../hps_soft/stdhep/src/random_sample.cc
 - For the beam's Poisson distribution, $\mu = \frac{\# of generated events}{500k} \sim 1.4$
 - After sampling, each beam file contains 500k events
- Each signal file is also sampled into 100 files (according to cross section), and each of these 100 files are merged with sampled beam files 1-to-1
 - hps-mc/stdhep/src/merge_files.cc
 - Each mixed file contains 500k events to be run through SLIC
- After SLIC, each of these 100 files are readout at the same time
 - where the "100to1" tag comes from

After SLIC

- Files are readout, either 10-to-1 or 100-to-1 (explicitly labelled)
 - /org/hps/steering/readout/EngineeringRun2015TrigPairs1_Pass2.lcsim
 - /org/hps/steering/readout/EngineeringRun2015TrigSingles1_Pass2.lcsim
- Then reconstructed
 - /org/hps/steering/recon/EngineeringRun2015FullReconMC.lcsim
 - The latest MC (output from every step + DSTs + tuples) is in /mss/hallb/hps/production/rotationFix

MC chain for wab-beam-tri (flowchart)

~few days / 10 sec long beam time (5 billion bunches) + overhead for job failures

Disk space: ~5 TB / (10sec beam time) dominated in the SLIC-Readout step

 $10 \times$ more statistics is doable, but $100 \times$ is the "effective limit" (months of production).

However, in an effort to help increase statistics...

New MC type: tritrig-wab-beam

- A MG5 updated version of "tritrig-beam-tri"
- Mixing tridents by cross section before SLIC (WBT) is very inefficient
 - ~270,000 triggered events per 5,000,000,000 bunches
- Instead, mix tridents into "wab-beam" after SLIC, but before readout
 - Space tridents by 250 bunches (~4 trigger windows) and insert into beam
 - Each readout event is approximately a trident event
 - ~8.7 million triggered events per 5,000,000,000 bunches (32x increase!)
 - A much more efficient way to increase statistics
 - However, the trigger rate is artificially increased to ~2 MHz
 - Please be aware of this when normalizing
- "wabtrig-beam-tri" can be made the same way to study wab backgrounds

New MC type: tritrig-wab-beam

- Full MadGraph5 tridents are only "tritrig" (tridents with an ESum cut)
- Unbiased (uncut) MG5 tridents below ESum~Ebeam/2 give an unstable cross section across files
- Since there is a trident event inserted in each trigger window, unbiased ones are left out from pre-SLIC mixing for now. MG4 "tri" would need to be used for this (but probably shouldn't).
- Tridents are inserted at 2 MHz (20k events per 10 ms of beam), so this may be difficult to normalize. More of a hack to get events with background.

New MC repository to house framework

- <u>https://github.com/JeffersonLab/hps-mc.git</u>
- Contains everything needed to run the MC chain:
 - EGS5 + HPS-specific configs
 - Madraph4 + Madgraph5 generators
 - Stdhep programs needed for pre-SLIC processing
 - Scripts to submit MC jobs to a batch farm
- Jeremy has been tweaking the layout and creating wrappers to build everything more easily

For more information on how to run MC or what the files contain,

<u>https://confluence.slac.stanford.edu/display/hpsg/MC+Production</u>

How to run:

- 2015 MC Production using a Command Line
- <u>2015 MC Production Using Scripts</u>

Normalizations:

- <u>https://confluence.slac.stanford.edu/display/hpsg/MC+Generated+Cros</u>
 <u>s+Sections</u>
- If you need something, or run into issues, please email Takashi and me

MC Tasklist (discussion)

- At least 100 sec. of Nominal/L0 tritrig-wab-beam (all energies)
- 2.3 GeV everything
- "Wabtrig-beam-tri"
- More 1.056 GeV A'
- 1.5mm
- Rough Priority? (Publications/upgrade -> who's graduating next?)

Backup

- Unbiased Tridents ("tri", e- N+ > e- N+ e+ e-)
 - MadGraph cuts:
 - 50 MeV< e+ energy < 100 GeV
 - 10 mrad < e+ theta_y < 100 rad
 - No additional cuts in egs5 (lhe_v1)
- Preselected Tridents ("tritrig", same diagram)
 - MadGraph cuts:
 - 50 MeV < e+, e- energy < 100 GeV
 - 10 mrad < e+, e- theta_y < 100 rad
 - 10 MeV < invariant mass < 100 GeV
 - ESum > 500 MeV (for 1.056 GeV beam)
 - No additional cuts in egs5 (lhe_v1)

- Unbiased Tridents ("tri", e- N+ > e- N+ e+ e-)
 - MadGraph cuts:
 - 50 MeV< e+ energy < 100 GeV
 - 10 mrad < e+ theta_y < 100 rad
 - No additional cuts in egs5 (lhe_v1)
- Preselected Tridents ("tritrig", same diagram)
 - MadGraph cuts:
 - 50 MeV < e+, e- energy < 100 GeV
 - 10 mrad < e+, e- theta_y < 100 rad
 - 10 MeV < invariant mass < 100 GeV
 - ESum > 500 MeV (for 1.056 GeV beam)
 - No additional cuts in egs5 (lhe_v1)
 - e- N+ > e- N+ f+ f- @3 (RAD)
 - e- N+ > e- N+ f+ f- @2 (BH)

"RAD" and "BH" can also be generated separately, and have distinguishable electrons

- WAB ("wab", f- N+ > f- N+ x)
 - MadGraph cuts (similar for unbiased tridents)
 - 50 MeV< e+, e- energy < 100 GeV
 - 10 mrad < e+, e- theta_y < 100 rad
 - No additional cuts in egs5 (lhe_v1)

• A' ("ap", e- N+ > e- N+ (x > f+ f-))

- MadGraph cuts (virtually none)
 - e+, e- energy < 100 GeV
 - e+, e- theta_x,y < 100 rad
 - Invariant mass < 100 GeV
 - No additional cuts in egs5 (lhe_v1)

- WAB ("wab", f- N+ > f- N+ x)
 - MadGraph cuts (similar for unbiased tridents)
 - 50 MeV< e+, e- energy < 100 GeV
 - 10 mrad < e+, e- theta_y < 100 rad
 - No additional cuts in egs5 (lhe_v1)

• A' ("ap", e- N+ > e- N+ (x > f+ f-))

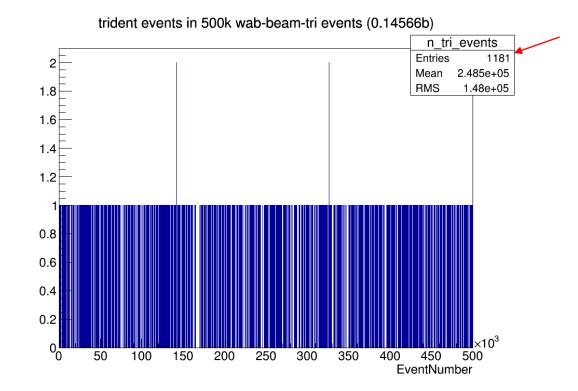
- MadGraph cuts (virtually none)
 - e+, e- energy < 100 GeV
 - e+, e- theta_x,y < 100 rad
 - Invariant mass < 100 GeV
 - No additional cuts in egs5 (lhe_v1)

No egs5 scattering for A's

Decay length is applied during stdhep conversion ("stdhep/lhe_tridents")

MadGraph Generator Scripts

• Scripts that run MadGraph:


/u/group/hps/production/mc/EngRun2015Scripts/lhe/

 The generators and run cards can be found here: /u/group/hps/production/mc/MadGraph/

To Calculate Expected Tridents in a WBT File

of trident events per 500k bunches =
(0.14566 barns)*(6.306*^-2 nuclei/barn-cm)*(0.0004062 cm)
(625 electrons/bunch)(500000 bunches)

= 1166

MC directory naming (/mss/hallb/hps/production/***/...)

postTriSummitFixes :

Incorporates the following fixes/improvements that took effect after the **<u>Trident Summit</u>**:

- WAB events are now unweighted (labelled 'wabv2')
- The WAB process is now suppressed in egs5, since it was not being handled correctly (the electron was not being scattered). This also prevents double-counting the MadGraph WABs. (files labelled 'egsv5')
- Updated target thickness (now 4.062 um from 4.375 um). Calculated from Clive's Note
- MC events are shifted 5mm along the z-axis to account for a discrepancy in target position
- New detector geometry that removes extraneous material (EngRun2015-Nominal-v5-0-fieldmap)
 - The carbon fiber volume in the L1-3 half-modules was previously too large, obstructing the beam.
 - 1.5mm SVT version is also available
- GEANT4/SLIC has been updated to 10.01.p03/REL, from 10.01.p02/HEAD.
- Additional 'wab-beam-tri' tags within the 'postTriSummitFixes' directory:
 - **500kBunches:** Enough WABs were guaranteed to be generated in order to make 500k bunches (1ms) of mixed background per SLIC file, 10ms per recon file. Corrects the overall normalization of wab-beam-tri in analysis.
 - zipFix: 500kBunches + fixes another small error which potentially prevented photons from being handled correctly
 - **TOOffset:** Recon used the same steering file as for data recon, which sets 'correctTOShift' and 'correctChanTO' flags to 'true' in RawTrackerHitFitterDriver (determined to not be the correct way to process MC)
- The "most correct" 2015 wab-beam-tri files are currently labelled 'zipFix' (NOT T0Offset!)

Other 2015 MC directories (/mss/hallb/hps/production/***/...)

Pass

 Uses a jar (also tagged in the file name) that matches an 'official' data pass of the same number

DBGainsPass

• Database runtime gains used for readout

LucaTri

• Luca's various Vegas trident generator tests (labeled by date)

LayerOStudies (older LO studies, "rotationFix" is updated)

• A pass using the new Layer-0 detectors will go here