SVT Alignment update

Alessandra Filippi INFN Torino & SVT group

HPS Collaboration meeting, JLAB, May 4, 2017

Outline

- Why is a new version of alignment needed?
- Focus on 2015 alignment: curved+straight tracks
 - Internal alignment
 - Global alignment:
 - Impact parameters
 - Beam spot (target) coordinates study
 - Momentum calibration
- First results on 2016 alignment (preliminary, work in progress)

2015 data: current and new alignment

Current alignment status

- Same alignment geometry available for 2015 and 2016 data, **tuned on 2015 curved tracks only (version 5.0)**
- Strategy: adjust sensor position and rotation (internal alignment) + tune weak modes (global translations)
 - Internal alignment: 6 degrees of freedom per sensor (actually, 5)
- Two steps:
 - Internal alignment provided by additive offsets by Millepedell software leaving u translations only free to float (one offset per sensor)
 - Global alignment provided by tweaks: additive offsets applied to translational degrees of freedom for ALL sensors
 - Coherent displacement of a group of sensors
 - Information from selected samples: full energy electrons, Møller events
- Tracks with magnetic field: good results for 2015 data, satisfactory for 2016
- Straight tracks: very bad alignment quality
- Purpose of new studies: provide a geometry which works for both curved and straight tracks goal: achieve residuals better than 2 μ m, width below 5 μ m

Current alignment 2015: curved tracks

u residual mean value/ σ

d_0 : ~impact parameter along v

Current alignment 2015: straight tracks

New-geo 2015: systematic approach for internal alignment

- Start from scratch from ideal geometry including optical survey
- Standard reconstruction: all tracks with at least 5 hits accepted out of all strategies, just ghost hits removed
- Work out stepwise alignment learning from the results of the previous iteration
- Apply Millepede on a mixed track sample, curved/straight tracks (700K x2) equally weighted
- Float sensors one by one (or groups of sensors belonging to the same stack), including , in order:
 - u translations (measurement direction, ~y axis in jlab ref system)
 - w translation (~z axis)
 - rotations around all axes
 - Rotations provide a way to modify the position of the sensor along the strip direction
- Last step: inclusion of the beam spot/vertex (curvilinear/perigee frames) constraints
 - As Millepede offsets
 - introducing "global" alignment tweaks as translational offsets to all sensors

2015 new alignment: u residuals

Blue: current geo Red: new geo

New geometry curved tracks

New geometry straight tracks

New alignment quality: u res vs u scatter plots

Sensitive to rotations around w axis

Blue: current geo Red: new geo

Curved tracks

Straight tracks

Beam spot constraints

- The beam spot coordinates introduction *is not* a weak mode of the alignment
 - Sizeable impact on the internal alignment quality

Millepede based approach

- Insert two fake additional layers-0 (T&B) centered at the axis origin and determine by MP the translational offsets necessary to make the top and bottom tracks pass through the same point on this layer
 - 6 more degrees of freedom bound by three constraints relating top/bottom
 - Difficult to get a reasonable convergence of the minimization
 - very limited improvement on the overall alignment

Use impact parameter distributions and exploit correlation of the target position with the dip angle

- Global offset along measurement direction u: ~z₀
- Global offset along the strip direction v: ~d₀
- Global offset along w: study tanλ vs y_T correlation

Global alignment 2015: impact parameters and target coordinates

• Impact parameters d_0 and z_0 are used to bring to (0,0,0) the $(x_T,y_T, z_T=0)$ coordinates (point of closest approach in the plane $z_T=0$)

2015 data: momentum calibration

- Last global calibration: momentum scale
- Depends on the track curvature: not a weak mode
- Study on elastic peak: require convergence of top and bottom estimations to the same mean value AND calibration to the nominal expected momentum
- Systematic underestimation of about 20 MeV/c (also present with current alignment)

Current geometry

New geometry

Montecarlo studies of energy loss

- Purpose: study the source of this underestimation by Montecarlo data
 - Energy loss in the sensors not properly taken into account by GBL?
 - Energy lost in the target before emission?
 - Radiative losses? (slightly asymmetric peak)

- Study of the reconstruction response to fixed momentum electrons
 - Simulation: include energy loss in the silicon layers and multiple scattering effects
 - Reconstruction through GBL as for real data
 - Slightly linear trend of the underestimation: about
 5-6 MeV/c of systematic error for 1.056 GeV/c tracks

Magnetic field issue?

- Some simple tests replacing the magnetic field map with a constant field along y with a small change in the overall intensity
- 2015 map: maximum field $B_y = -0.2436$ T
- A constant magnetic field of intensity $B_y = -0.2445$ T can help moving the elastic peak to the expected position ($\Delta B_y = 9$ G)
- No effect on internal alignment quality

2016 data: current vs new alignment – preliminary results

Current alignment 2016: curved tracks

Not optimized for 2016 data taking

Bottom section more critical (vacuum pulling effect?)

d_0 : ~impact parameter along v

Current alignment 2016: straight tracks

2016 internal alignment: preliminary results and comparison with current geo

New geometry curved tracks

New geometry straight tracks

New alignment 2016: u res vs u scatter plots

Sensitive to rotations around w axis

Blue: current geo Red: new geo

Curved tracks

Straight tracks

Sensors #3

2016 global alignment (impact parameters)

d₀ impact parameters

2016 momentum calibration: elastic peak

Current geometry

Current geometry

- Mismatch mismatch top vs bottom: 88 MeV/c
- New geometry
 - agreement top/bot within 8 MeV/c
 - Underestimation of ~30
 MeV/c wrt to nominal
 beam momentum
 - Magnetic field correction currently under study

New geometry

Outlook

2015 data taking:

- Few more tunings related to the absolute momentum calibration/possible magnetic field issues
- New-geo 2015 ready for release as compact.xml file: massive test on a consistent data sample needed
 - Possibly the same set used for current analyses, to compare results quality with the same set of cuts

2016 data taking:

- Some work still needed to optimize aligned geometry
 - Speedier procedure (now that the path is defined and a good starting point is available, following the same steps as for 2015 data)
 - Slower data reconstruction (...so it takes time, anyway)
- Codes for alignment and analysis available on git for the braves who want to enter the challenge and help out

Software git repositories

- How-to instructions for GBL+Millepede analysis
 - <u>http://confluence.slac.stanford.edu/display/hpsg/SVT+Detector+Alignment</u>
- GBL software (forked from phansson git repo)
 - <u>https://github.com/afilippi67/hps-gbl.git</u>
 - Checkout Align2016 branch
- Millepedell software (forked from phansson git repo)
 - <u>https://github.com/afilippi67/hps-mille.git</u>
 - Checkout Align2016 branch
 - Data quality checks: root macros
 - <u>https://github.com/afilippi67/DataQualityMacros.git</u>
 (check out branch root6, master branch compliant to root 5.34)