Measuring efficiency using 3 particle final state events

Holly Szumila-Vance
HPS Collaboration Meeting
3 May 2017

Outline:

- Rate effects and Ecal-only data
- 3 particle final state event selection
- Topologies
- Efficiencies
- Summary

2016 SVT data has rate dependency

Effect is not clear in Ecal-only selection

Ecal Only Selection - 2015

Run	Run Current (nA)	Fcup livetime	Q (nc)	Q (nc) x livetime
5749	30	0.97	14631	14193
5754	40	0.938	15330	14380
5755	60	0.87	17288	15041
5772	50	0.8822	333139	293895

- All used v7tb-Lat147 trigger
- 5749, 5754 had unique pedestals for specified current
- 5755 and 5772 used 50 nA pedestals

2015 running

Loose selection (dominated by WABs):

- E < 0.8 GeV
- Time difference < 1.6 ns
- Pairs1
- Trigger time window
- 1 cluster in top, 1 in bottom
- 1 cluster left half, 1 cluster right half

Here's the same loose selection I showed in November where wab-beam-tri was using MG4.

→Not very different from now.

2015 running

Tight selection (reduce WABs):

- E < 0.8 GeV
- Time difference < 1.6 ns
- Pairs1
- Trigger time window
- 1 cluster in top, 1 in bottom
- 1 cluster left half, 1 cluster right half
- clusters within +/-200 MeV
- Coplanar 180 +/- 10 deg

This wab-beam-tri MC uses MG5

Here's the same tight selection I showed in November where wab-beam-tri was using MG4.

→Low Esum in MG5 looks much better!→High Esum in MG5 unchanged

3 Particle Final State Event Selection

- Tracks:
 - P < 850 MeV (to avoid FEE)
 - Tracks can share no more than 3 hits with other tracks
 - GBL tracks (5+ hits)
 - 3rd track in fiducial region (see next slide)
- Clusters:
 - Cluster E < 850 MeV (to avoid FEE)
 - Energy-Distance Cut (shown 2 slides from now)
 - Clusters in trigger time window [40, 50]
 - Choose clusters at least ¾ crystal away from edge
 - Cluster energy sum > 0.9 GeV
- Track-Cluster Matching:
 - Matching within 10 sigma, based on position
- After matching, check matched clusters are in time. Choose the best, unmatched cluster as one that is in time, has smallest time difference, and energy sum of all clusters < 1.2 GeV
- Pairs1 trigger

3rd track Fiducial Cuts, from flat MC

Results of final event selection

Consider these topologies:

e- (close), e+

e- (far), e+

e- (far)

e- (close)

e+

e- (close), e- (far)

- Disambiguate the e- cluster using the cluster position in y.
- Consider each of these three cases with e+ top/bottom.

Tag and probe (slide shows 1 topology):

 Consider all combinations and keep top/bottom separate.

Tritrig-wab-beam-tri (wab-beam-tri had not enough statistics)

e- efficiency when alone in top half
e- efficiency when alone in bot half
e- efficiency when e+ in same top half
e- efficiency when e+ in same bot half
e- efficiency when e- in same top half
e- efficiency when e- in same bot half

- e+ efficiency when alone in top half
- e+ efficiency when alone in bot half
- e+ efficiency when e- in same top half
 - e+ efficiency when e- in same bot half

5772

e- efficiency when alone in top half

0

Δ

e- efficiency when alone in bot half

e- efficiency when e+ in same top half

e- efficiency when e+ in same bot half

e- efficiency when e- in same top half

e- efficiency when e- in same bot half

5772

- e+ efficiency when alone in top half
- o e+ efficiency when alone in bot half
- e+ efficiency when e- in same top half
- □ e+ efficiency when e- in same bot half

3 tracks matched

3 tracks matched

5772

e+ efficiency when alone in top half

- e+ efficiency when alone in bot half
- e+ efficiency when e- in same top half
- □ e+ efficiency when e- in same bot half

2 tracks matched

2 tracks matched

- e- efficiency when alone in top half
- e- efficiency when alone in bot half
- e- efficiency when e+ in same top half
- e- efficiency when e+ in same bot half
- e- efficiency when e- in same top half
 - e- efficiency when e- in same bot half

Positron Track Efficiency

Δ

5772

- e+ efficiency when alone in top half
- e+ efficiency when alone in bot half
- e+ efficiency when e- in same top half
- □ e+ efficiency when e- in same bot half

WAB

e- efficiency when alone in top half

0

Δ

- e- efficiency when alone in bot half
- e- efficiency when e+ in same top half
- e- efficiency when e+ in same bot half
- e- efficiency when e- in same top half
 - e- efficiency when e- in same bot half

- e+ efficiency when alone in bot half
- e+ efficiency when e- in same top half
- □ e+ efficiency when e- in same bot half

Conclusions:

- Three particle final state events probably mostly WABs
- Efficiencies could by systematically low in regions by 5-10%
- Don't see huge top/bottom difference
- Need to run over more data
- Difficult to find clear correction with 3 prong events
- Being able to vertex 3 tracks could help (and useful to vertex analysis tail studies)