ECal Performance and Calibration

HPS Collaboration Meeting, JLab

4 May 2017

Sebouh Paul

College of William and Mary

*with some slides borrowed with permission from Holly Szumilla Vance

and Raphaël Dupre's talks from the previous collaboration meeting

Outline

- Performance
 - > NIM paper
 - ➤ trigger & resolutions
 - > live monitoring
- Calibrations:
 - ➤ Gain calibrations:
 - Cosmics
 - FEEs
 - Time Dependent
 - > Timing calibration
 - cluster time rf time
 - time walk
 - Track-cluster match (UPDATE)

NIM Paper

- Both datasets: 2015 and 2016
- The paper is done
 - Accepted and approved by NIM
 - https://arxiv.org/pdf/1610.04319.pdf
- Coordinated by G. Charles and M. Garçon
 - > Thanks to the main contributors
 - Holly, Kyle, Nathan, Rafayel, Valery, Andrea, Norman The HPS electromagnetic calorimeter

I. Balossino^a, N. Baltzell^b, M. Battaglieri^c, M. Bondì^d, E. Buchanan^e, D. Calvo^a, A. Celentano^c, G. Charles^{f,*}, L. Colaneri^{f,g}, A. D'Angelo^g,
M. De Napoli^d, R. De Vita^c, R. Dupré^f, H. Egiyan^b, M. Ehrhart^h, A. Filippi^a, M. Garçon^{b,i,*}, N. Gevorgyan^j, F.-X. Girod^b, M. Guidal^f, M. Holtrop^k,
V. Iurasov^f, V. Kubarovsky^b, K. Livingston^e, K. McCarty^k, J. McCormick¹, B. McKinnon^e, M. Osipenko^c, R. Paremuzyan^k, N. Randazzo^d, E. Rauly^f, B. Raydo^b, E. Rindel^f, A. Rizzo^g, P. Rosier^f, V. Sipala^m, S. Stepanyan^b, H. Szumila-Vance^h, L. B. Weinstein^h

^aIstituto Nazionale di Fisica Nucleare Sezione di Torino, 10125 Torino, Italy ^bThomas Jefferson National Accelerator Facility, Newport News, Virginia 23606

Performance

- Resolutions at the level expected §
 - Cluster time difference resolution down to ~330 ps
 - Energy resolution

$$\frac{\sigma_E}{E}(\%) = \frac{1.62}{E} \oplus \frac{2.87}{\sqrt{E}} \oplus 2.5$$

 A bit better since TDC removal (2.3 GeV point)

High trigger efficiency

Live Monitoring

Very useful scalers

 Allow to spot any problem within minutes

LED system

Allow for full check of the ECal in less than 5 minutes off beam

Slow Controls

- Allows control but also monitor and and records of all necessary data
 - Voltages and temperature
- These tools allowed for a very smooth running of the calorimeter

Cosmic calibration

ECal Occupancy 3500 10 3000 2500 2000 1500 1000 500 30 25 35 0 15 20 45 10 40 Gain Calibration 10 0.2 0.18 [MeV 0.16 G =[FADC 0.14 0.12 0.1

15

10

20 25 30

35

40

45

0.08

0.06

0.04 0.02

0

https://userweb.jlab.org/~hszumila/calibration/cosmic/cosmics.html

0

5

FEE calibration --procedure

Select clusters where:

Seed energy carries >60% cluster energy

Cluster Energy (before shower-loss corrections)[GeV]

• Seed energy > 1.1 GeV

Obtain iteration coefficients by fitting cluster peaks.

Cluster Energy (before shower-loss corrections)[GeV]

FEE calibration

All crystals that are re-calibrated using FEEs:

Time Dependent

Gains

-Why? We observed that the FEE energy and 2 cluster energy sum peaks drift over time. -**How much?** up to +7% correction for a few runs -Which runs are most affected? The first few runs after the beam turns on after being off for an extended period of time. -Priority? MODERATELY LOW (only really important if we plan to combine ecal+svt for improved mass resolution)

FEE and 2CES peaks vs time (2016) 2.4 FEE 2CES 2.2 2.15 2.1 02/03 09/03 16/03 23/03 30/03 06/04 13/04 20/04 27/04 One Cluster Energy Peak (2016) 11

time

Timing calibration

Track Cluster Match

$$n_{\sigma} = hypot\left(\frac{x_{cl} - x_{tr} - \mu_{x}(p)}{\sigma_{x}(p)}, \frac{y_{cl} - y_{tr} - \mu_{y}(p)}{\sigma_{y}(p)}\right)$$

Changes:

- μ(p), σ(p) are 5rd order poly fits, separately calculated for:
 - ≻ top/bottom
 - ➤ has/doesn't have L6 hit
 - ➤ charge (+/-)
- Special case: track extrapolates within ½ crystal from Ecal edge

> y_{track} set to $\frac{1}{2}$ crystal from edge in calculation.

Track-Cluster Match Parameter Extraction Example:

Track Cluster Match Parameter Extraction: All cases

Track Cluster Match Results

- Results shown are from trident tuples
 - Loose cuts:
 - Track Chi^2/ dof < 5</p>
 - Track-cluster time difference within +-4.5 ns window
 - Need to test inside HPS java before making pull request
 - n_{σ} distributions look good

Homework before next pass

- We have two modification-branches that need a little more testing before being merged to master
 - track-cluster match
 - time-dependent ecal gains
- Check if edge-corrections to energy (calculated for 1.05 GeV) are still valid at 2.3 GeV

Summary

- NIM paper approved
- Ecal has been calibrated for:
 - ➤ Gains (using cosmics and FEEs)
 - > Time (w/ time-walk corrections)
- Track Cluster matching
 - New set of parameters created for 2.3 GeV running
 - Improved matching algorithm for particles near the edge.