Monte Carlo Update

- The HPS experiment has thus far employed a pair trigger for the purpose of selecting trident-like events.
 - The pair trigger takes two calorimeter clusters and, using a number of cuts, selects those most likely to be tridents.

- It turns out that for many tridents, the electron in the pair is lost to the beam hole and, further, wide-angle bremsstrahlung rates are very high.
 - Many lost electrons are good, high-energy particles.
 - Wide-angle bremsstrahlung can often cause a pair trigger.

- A possible solution to this is positrons. Positrons rarely appear outside of tridents, and are produced relatively rarely.
 - A positron trigger should be able to select events where the electron is lost, increasing trident rates in readout.
 - $\,\circ\,$ A positron trigger should be more pure and have fewer WAB events.
- A singles triggers won't work!
 - Rates are extremely high, even when limited to just the positron side of the detector.
 - There is not a reliable way to differentiate a positron from other particles using only the calorimeter.
 - The SVT can not perform reconstruction quickly enough to be used for triggering purposes.

- Proposed solution: Add a hodoscope in between the calorimeter and SVT.
 - The hodoscope can detect
 when a charged particle
 passes through, removing
 photon contamination.
 - Rates can be controlled by establishing a coincidence between the hodoscope and the calorimeter face.
 - This will reduce rates enough to trigger on single clusters on the positron side of the calorimeter.

Particle Selection

- Before considering a positron trigger, it is first necessary to characterize the positrons.
 - \circ Where do they end up?
 - What backgrounds are there?
 - $\,\circ\,$ What rates could be expected?
- To do this, SVT data is used to select particles and map their positions on the calorimeter. Several classes of particle are defined.
 - Clustered Particles
 - Have a GBL track and cluster.
 - Have a cluster/track matching goodness of n_{σ} < 3.
 - Have a track fit goodness of $\chi^2/n_{\rm DF}$ < 5.
 - Have a charge of q < 0 (electrons) or q > 0 (positrons).

Particle Selection

- Particle classes [continued]:
 - Clusterless Particles:
 - Have a GBL track.
 - Have a track fit goodness of $\chi^2/n_{\rm DF}$ < 5.
 - Have a charge of q < 0 (electrons) or q > 0 (positrons).
 - Have either no cluster, or cluster/track matching goodness $n_{\sigma} > 5$.
 - Ambiguous Particles
 - Have a GBL track and a cluster.
 - Have a track fit goodness of $\chi^2/n_{\rm DF}$ < 5.
 - Have a charge of q < 0 (electrons) or q > 0 (positrons).
 - Have a cluster/track matching goodness $3 < n_{\sigma} < 5$.

Positron Positioning and Rates

- We first consider the positron spatial distribution.
 - \circ Only clustered positrons are considered.
 - We want to have a coincidence between the hodoscope and calorimeter, so we will need a positron cluster.
- The *x*-distribution on the calorimeter face for these particles is plotted.

Positron Positioning and Rates

- First thing to note: the large peak at 50 mm is almost certainly not a real positron peak. Note that it is almost entirely absent from tridents.
- Real positrons appear to largely start at about 100 mm.

Positron Positioning and Rates

- It seems (real) positrons begin to appear roughly around 100 mm.
- A cumulative positron rate can be estimated using the previous plot.

Positron Position (Cumulative)

• Rates for (real) positrons at x > 100 mm appear to be roughly 6 kHz.

Positron Positioning and Rates

- Of course, positrons are not the only charged particles. Accidentals need to be considered as well.
 - $\,\circ\,$ Consider the rates when including electrons and ambiguous particles.

- With all charged particles, we would expect a rate of roughly 16 kHz.
 - This is manageable!
 - $_{\odot}\,$ It is also a major improvement over the raw calorimeter cluster rates.

Cluster x (Cumulative)

• All cluster rates for the same region are order 50 kHz!

- Tracks are a good way to estimate the total *analyzable* positron rate, but are not good for estimating the total rates a hodoscope would actually see.
 - Many particles may be produced in the SVT and not hit enough layers to produce tracks.
- The SVT layer 6 can serve as a useful stand-in for the hodoscope.
 - $\,\circ\,$ It is located not too far from the expected hodoscope position.
 - $\,\circ\,$ It only detects charged particles.
 - Most particles that would hit the hodoscope will also probably pass through the SVT.
- The rate of hits on layer 6 is then measured and a projected rate calculated.

• Consider the results from the 2015 data run:

Layer 6 Hit Position

• Rates ultimate get quite high, but remain fairly low in the positron region.

• Viewed cumulatively, from the positron side of the detector:

Layer 6 Hit Position (Cumulative)

• For the region of layer 6 that corresponds roughly to the positron region of the calorimeter, rates of around 150 kHz are expected.

Positron Positioning and Rates

- Rafo also performed a simple study to simulate a hodoscope trigger rate.
 - \odot Layer 6 was used in place of a hodoscope.
 - A spatial coincidence was established between the layer 6 hit position and calorimeter cluster position.

Positron Positioning and Rates

- Using these relations and performing the matching, he estimates a trigger rate of roughly 12 kHz.
 - This is consistent with the above predictions of 16 kHz, with some pruning due to the hit relations.

• Full Cuts:

- \circ 38 ns < $t_{\rm cl}$ < 48 ns
- $\circ x_{\text{ecal}} > 100 \text{ mm}$
- $\circ x_{L6} > 50 \text{ mm}$
- \odot Apply hit position relations.

- 150 kHz is tenable, and the positron trigger feasible.
- The question remains, however: Is the positron trigger useful?
- It is important to test how many new trident events we expect to gain from introducing a positron trigger.
- It also important to see that we are able to select tridents when one particle (the electron) does not possess an associated cluster.

- Consider a traditional two-cluster trident selection cuts.
 - $\,\circ\,$ Select a particle pair.
 - \circ Both particles should have tracks.
 - \circ Both particles should have clusters.
 - \circ Require track $\chi^2/n_{\rm DF}$ < 5 for both tracks.
 - \circ Require n_{σ} < 3 for both track/cluster pairs.
 - \circ Select only one track if more than one is matched to a single cluster.
 - \circ One cluster must have y > 0 and one must have y < 0.
 - \circ Cluster time difference Δt must be within some threshold.
- Several of these cuts can not be applied as-is to a pair where one track lacks a cluster. Can we work around this?

- Consider each of the no-longer valid cuts.
 - \circ Both particles should have clusters.
 - Now, only the positron must have a cluster.
 - \circ Require n_{σ} < 3 for both track/cluster pairs.
 - Retain this rule for the positron. It is not applicable for the electron.
 - $\,\circ\,$ Select only one track if more than one is matched to a single cluster.
 - Duplicate tracks can be eliminated looking for tracks that share more than three tracker hits in common. In this case, keep only the track with the best $\chi^2/n_{\rm DF}$.
 - \circ One cluster must have y > 0 and one must have y < 0.
 - Track position can be extrapolated to the calorimeter to determine y instead of using cluster position.

- Most of these changes are fairly straightforward. The biggest concern is the time cut.
 - The time coincidence cut cleans a lot of background out of regular trident selection.
 - Tracks have a time-of-flight corrected average time based on their tracker hits.
 - \odot It needs to be shown that this can work in conjunction with a cluster time to replicate the time coincidence cut.
- To begin the process of checking this, clustered tracks are considered.
 The time of the cluster is plotted versus the time of the track to establish a relation between the two.

• There is, fortunately, a clear relation between the two times.

• A new time coincidence cut of $\Delta t = (t_{e^+} - t_{e^-} + 43)$ is defined.

- We may now compare the time coincidence distributions for particle pairs.
- We consider several sets of distributions.
 - \circ Clustered e⁺/e⁻ pairs with no other cuts.
 - $\,\circ\,$ A clustered e⁺ and a clustered or unclustered e⁻ with no other cuts.
 - \circ Clustered e⁺/e⁻ pairs with all (new) non-temporal trident cuts.
 - A clustered e⁺ and a clustered or unclustered e⁻ with all (new) nontemporal trident cuts.
- This allows both the old and new distributions to be compared.
 - $\,\circ\,$ With particles clustered, the old cluster time difference will be plotted.
 - For the case of one particle clustered, the new track/cluster time difference will be plotted.

Trident Rate Gain

• We may now compare the time coincidence distributions for particle pairs.

• There is much more background noise in the track/cluster distribution and a wider peak for the no additional cuts pairs.

Trident Rate Gain

• We may now compare the time coincidence distributions for particle pairs.

• Applying the trident cuts cleans up the distribution considerably, though the time resolution remains wider in the track/cluster case.

Trident Rate Gain

• Note that this same behavior is seen when using a production run, but is clearer. Consider the uncut plots below, for run 5772:

Trident Rate Gain

• The same plots, but with trident cuts:

Trident Rate Gain

• It seems that the time coincidence cut is viable, if not as accurate. As a final test, consider a comparison of the full trident selection.

• We observe a considerable gain in rates, measured to be roughly 50%.

Monte Carlo Analysis

- There are some questions which are difficult to answer from data.
 - What is the risk of back-scatter from the calorimeter onto the hodoscope?
 - What is the spatial relation between a particle position on the hodoscope, versus the calorimeter face?
 - \circ What is the expected trigger rate of a positron trigger for 4.4 GeV?
 - o How should the hodoscope be pixelated?
- For these, it is useful to employ Monte Carlo data.
 - $_{\odot}$ A large set of Monte Carlo was generated for 2.3 GeV.
 - Hodoscope is represented with inert material (EJ-204 scintillator; same as CLAS12 forward tagger.)
 - Scoring planes are used at both sides of the hodoscope and the calorimeter face to register particles.

Monte Carlo Analysis

- We begin by exploring back-scattering.
 - \circ A back-scattered particle is defined as any particle with a production vertex at z > 1100 (the hodoscope position) which passes through the rear hodoscope scoring plane.
- It is found that back-scatter accounts for only about 5% of particles on the hodoscope.
 - Virtually all back-scatter is extremely low energy as well.
- It appears that back-scatter is not a serious concern for a hodoscope at z = 1100 mm.

Monte Carlo Analysis

- Next, we explore potential backgrounds.
 - $\,\circ\,$ Two primary sources of background were discovered:
 - The vacuum box on the electron side
 - Wide-angle bremsstrahlung interacting with the mid-SVT region.

Positron Origin Vertex z vs. Calorimeter Position x

Monte Carlo Analysis

- The vacuum box produces a large number of very-low energy (sub-10 MeV) particles on the electron side of the detector.
 - These are easily controlled.
 - The hodoscope simply does need to extend into this region for proper positron trident acceptance.
- The central SVT structure interaction produces a cluster of positrons above and below the beam gap.

Monte Carlo Analysis

• Many of these WAB positrons are high-energy.

Positron Calorimeter Position (|p| > 200 MeV)

• However, they are almost exclusively below the 100 mm target range, and most are too high to hit the hodoscope at 1100 mm.

Monte Carlo Analysis

• We can also compare the hodoscope positron position to the calorimeter face positron position to investigate the possibility of a coincidence cut.

- It appears that there is a fairly strong relation between hodoscope and calorimeter position.
- This supports what Rafo found with L6.

Monte Carlo Analysis

• We see a similar result with time coincidence between the hodoscope and calorimeter. (Note: Usefulness here will depend on hodoscope/calorimeter timing resolution; probably not useful at trigger level.)

Positron Hodoscope-Calorimeter Time Coincidence

Monte Carlo Analysis

- Thus, it appears that:
 - Back-scatter is a very small percentage of hodoscope events, and very low energy. It is not likely to either overwhelm proper event selection or to greatly increase rates.
 - Notable backgrounds exist, but their positioning means they are unlikely to cause significant issues.
 - It is probable that a coincidence relation can be safely defined between the hodoscope and calorimeter.
- There is more to be done:
 - Hodoscope pixilation needs to be investigated.
 - \circ Rates need to be calculated and compared with data.
 - \circ Positron trigger needs to be fully simulated without using truth data.

Conclusion

- A positron trigger appears very feasible.
 - $\,\circ\,$ Positrons exist in a region where they are relatively dominant.
 - There appears to be a strong relation between positron position on a hodoscope and positron position on the calorimeter face. This allows for a spatial coincidence cut.
 - $\circ\,$ The same is true for hodoscope versus calorimeter time.
 - \circ Rate estimates for total charged particles are tolerable for readout.
- Positron trigger data is useful.
 - Trident data can be successfully reconstructed from data using a track/cluster pair for the positron and just a track for the electron.
 - $\,\circ\,$ All trident cuts can be replicated without requiring two clusters.
 - It is estimated that using electrons lost to the beam gap will increase trident rates to at least 150% - possibly more.