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Introduction

I HPS is planning on upgrading the existing SVT by
adding another tracking layer between the target and
current 1st layer

I This should drastically improve our vertexing reach

I Tracking layers 2 and 3 are also being moved towards the
beam for increased long-lived A’ acceptance

I Reach comparison for the first layer hit requirements as well
as other relevant simulations are presented

I Increased backgrounds studies due to upgrade are also
presented
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L0 Upgrade Simulation Dimensions

I Layer 0 sensor will contain 256 channels per sensor (no
intermediate strip), an axial and stereo sensor on top/bottom
and positron/electron side. Each sensor is 10 x 14.08 mm and
strips are 200 microns in simulation (aiming for 150 microns)

I Nominal has 640 readout channels (with intermediate strip),
an axial stereo sensor on top/bottom and positron/electron
side for layers 4-6. Each sensor is 100 x 38.4 mm and strips
are 250 microns
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L0 Monte Carlo

I A lot of computing time spent on L0 MC (thanks Brad), lots
of troubleshooting, and still a few issues to be solved

I tritrig-wab-beam - wabs with beam background combined
with tridents with beam background at enhanced rate

I Normalized by trident rate 155 1
nb (about 13% of 2015 total

luminosity at 0.5 mm) for both nominal and L0 (direct
comparison)

I wabs are NOT enhanced, so these are underestimated.
Eventually will have the correct proportions

I Skeptical of this normalization (probably about 75% luminosity
over-estimate) based on rates compared to tritrig + wab and
wab-beam-tri and data

I Goal is to obtain total 2015 luminosity at 0.5 mm
I Used to fit vertex tails to compute zcut, rate is used for reach

plots

L0 Upgrade Stanford



L0 Monte Carlo (cont.)

I Pure wabs, radiatives, and tridents (tritrig)
I Used to compute radiative fraction ( radiatives

wabs+tridents )
I MG5 radiatives for L0 are on the way

I wab-beam-tri - closest MC we have to beam
I 30 s of beam for L0; 10 s of beam for nominal
I Used for backround studies - trigger rates, occupancies, wab

conversion rates, and beam background rates

I Prompt and displaced A’s
I Used for acceptance and efficiency studies and mass resolution
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L0 Studies

I Acceptance (prompt A’s)

I Invariant Mass (Displaced A’s)

I Displaced Efficiency A′s Detectable after cuts
A′ truth (Displaced A’s)

I Vertex Tail Fitting and Z Cuts

I Reach Plots for First Layer Hit Requirements

I Future Plans for Reach Plots Using Other Layer Requirements
I Backgrounds

I Increased converted wabs due to L0 and moving L2/L3
I Occupancies (in the near future)

I Detailed plots here: L0 Plots
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Acceptance

I Geometrical acceptance for prompt A’s as a function of
mass for 1.05 GeV, 2.3 GeV, and 4.4 GeV beam energies

I The comparison is 5 hits in the nominal detector compared to
6 hits in L0 detector
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Cuts

I Analysis divided into mutually exclusive layer requirement
categories

I Nominal total reach = L1L1 + L1L2 + L2L2
I Upgrade total reach = L0L0 + L0L1 + L1L1 + L1L2 + L2L2

+ L0L2
I L0 Track χ2 < 35 and shared hits must be less than 4
I Current cuts eliminate about 20% more A’ and

background in L0
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Mass Vertex Resolution Improvement

I Displaced A’ mass resolution for unconstrained V0s
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Long-lived A’ Efficiency Improvement

I Moving in L2 and L3 improves efficiency for long-lived A’s
(only visible in L1L2 and L2L2 layer requirements)

I Ultimately improves reach for low ε2 A’s (after enough
statistics)
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Long-lived A’ Efficiency Improvement (cont.)

I Total efficiency sums efficiency of exclusive layer requirements
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Vertex Resolution Improvement

I Vertex resolution improves by about a factor of 2 for 1.05
GeV(dependent on mass and beam energy)
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Vertex Resolution Improvement All Energies

I Background are dominated by multiple scattering which
decreases with increasing momentum

I L0 vertex resolution improvement decreases slightly with
increasing beam energy (still a very good improvement!)
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Improved Z Cuts

I Improved vertex resolution causes improved z cuts (by about
the same factor)

I Z cuts for L0 (left) and nominal (right) at various luminosities
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Effect of Improved Z Cut

I A’ decays are exponential in z , so the number of detectable
A’s increases dramatically for lower Z Cut

I Efficiency after cuts and acceptance with z cuts (left),
produced A’s (right)
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Procedure for Obtaining Reach - Determining Z Cuts

I Fit function B(z) to tritrig distribution after cuts (Gaussian
with non-Gaussian tail)

I Scale function for desired luminosity, z cut is where
B(z) = 0.5 events in a mass bin of 2.6 times mass resolution
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Procedure for Obtaining Reach - Calculating Detectable
A’s

µs(z) = (NA′εreco(ztarg ))
e

ztarg−z

γcτ

γcτ

εreco(z)

εreco(ztarg )
εcut(z) (1)

I Number of detectable events is simply
∫ zmax

zcut
µs(z)dz

(essentially efficiency(z) * acceptance(z) * number of A’s(z))
I Reach contours are defined at the 90% confidence level which

is 2.3 expected events
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Reach Plot L0L0/L1L1 Comparison

I The procedure of requiring hits in the first layer is well
understood (thanks to Sho and Holly)

I Reach plots compare L0L0 in ugrade detector vs L1L1 in the
nominal detector (for a direct comparison we need L0L0 +
L0L1 + L1L1 for upgrade detector, so we are underestimating
our reach)
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Reach Plot L0L0/L1L1 Comparison (cont.)
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Number A’s Detectable L0L0/L1L1

I Number of detectable A’s past all cuts comparing L0L0 for L0
and L1L1 for nominal at 180 days

Mass [GeV]
0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06

0

0.5

1

1.5

2

2.5

3

3.5

4

Number A's Detectable Epsilson^2 = 8e-10

L0

Nominal

Number A's Detectable Epsilson^2 = 8e-10

Mass [GeV]
0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06

0

1

2

3

4

5

6

Number A's Detectable Epsilson^2 = 1e-09

L0

Nominal

Number A's Detectable Epsilson^2 = 1e-09

Mass [GeV]
0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06

0

2

4

6

8

10

Number A's Detectable Epsilson^2 = 2e-09

L0

Nominal

Number A's Detectable Epsilson^2 = 2e-09

Mass [GeV]
0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06

0

2

4

6

8

10

12

14

Number A's Detectable Epsilson^2 = 4e-09

L0

Nominal

Number A's Detectable Epsilson^2 = 4e-09

L0 Upgrade Stanford



Difficulty With Other Layer Requirements

I Backgrounds due to hit inefficiencies are cut out by
extrapolating track to active sensor (inefficiencies are NOT
present in MC)

I Remaining background is due to a hard scatter in the dead
silicon into the acceptance of the rest of the tracker
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Difficulty With Other Layer Requirements (cont.)

I Shifts peak of the distribution towards larger z

I Curves show the fraction of efficiency curve (i.e. the 10%

curve is the z0.10 is the solution to

∫ z0.10
ztarg

eff (z)dz∫ zmax
ztarg

eff (z)dz
= 0.10)

I Higher mass has larger z efficiency curves (may not even need
zcut)
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Other Layer Requirements Vz vs. Mass Nominal

I Can we trust this MC? Does this agree with data?

I In data, L1L2 has 30,000 events and L2L2 has 250 events at
120 1/nb (compared to 155 1/nb in MC)

I In the near future, add the correct proportion of wabs and
tighten up track extrapolation cut
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Other Layer Requirements Vz vs. Mass Upgrade Detector
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Backgrounds

I Backgrounds produced at the target remain the same in
upgrade detector

I Increased multiple scattering due to silicon (L0) in tracker
which is accounted for in the previous analysis

I Increased converted wabs due to extra silicon (L0) and
moving silicon into lower angular acceptance (L2 and L3)

I Trigger rate is 30 kHz for L0 and 22 kHz for nominal
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Backgrounds - Increased Wabs due to L0

I Only beamspot χ2 (for bad track fits) and isolation cuts (for
mis-hits) are present

I There is clearly a large rate increase at L0 due to converted
wabs

I The remainder of vertexing cuts eliminates these events
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Backgrounds - Increased Wabs due to L2 and L3

I Large rate increase for electrons below 15 mrad (due to L2
and L3 moving towards the beam)

I Requiring opposite volumes of electrons/positrons minimizes
this rate increase
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Future Work

I Mix correct fraction of wabs into the MC and solve other
MC issues

I More carefully optimize cuts for L0, currently cutting out too
many events (also solve other minor problems)

I Obtain total reach from all exclusive layer requirements (very
challenging)

I Vertex pulls and impact parameter cuts seem promising

I Recoil electron acceptance studies and occupancy studies

I Do it all again for 2.3 GeV!

I Open for ideas (but not too open...)
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Conclusion

I Adding a tracking layer between the target and current first
layer improves vertex resolution by about a factor of 2 in
all relevant beam energies, and hence improves the zcut

I By simply requiring first layer hits, the L0 detector shows a
drastic improvement in reach compared to the current
setup for 1.05 GeV

I It is reasonable to say that reach will improve significantly
for other relevant beam energies

I Moving in tracking layers 2 and 3 in by 0.8 mm improves
displaced A’ detection acceptance

I Mass resolution also improves slightly, and background rates
are manageable

I It is recommended that L0 production proceed ASAP (Tim)
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I MC Rate Comparisons
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I Vertex Z for background simulation using vertexing cuts
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I Number of A’s detectable for 4 weeks for L0 (left) and
nominal (right)
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I Number of A’s detectable for 10 weeks for L0 (left) and
nominal (right)
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I Number of A’s detectable for 180 days for L0 (left) and
nominal (right)
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