
Lowering boundaries between
data analysis ecosystems

Jim Pivarski

Princeton University – DIANA Project

May 3, 2017

1 / 41

Data analysis ecosystems

2 / 41

Physicists developed their own software for a good reason:
no one else was tackling such large problems.

3 / 41

Not so today. . .

4 / 41

Not so today. . .

5 / 41

Case in point: ROOT and Spark

Relative rate of web searches (Google Trends):

Question-and-answer sites:

I RootTalk: 14,399 threads in 1997–2012 (15 years)

I StackOverflow questions tagged #spark: 26,155 in the 3.3
years the tag has existed.

More users to talk to; more developers adding features/fixing bugs.

6 / 41

Building bridges: low effort-to-reward

ef
fo

rt
we are here

we could be here

7 / 41

Building bridges: low effort-to-reward

ef
fo

rt
we are here

we could be here

building bridges

8 / 41

Who am I?

Jim Pivarski

I 5 years CLEO (9 GeV e+e−)

I 5 years CMS (7 TeV pp)

I 5 years Open Data Group

I 1+ years Project DIANA-HEP

hyperspectral imagery
automobile traffic
network security
Twitter sentiment
Google n-grams
DNA sequence analysis
credit card fraud detection

and “Big Data” tools

9 / 41

Who am I?

Jim Pivarski

I 5 years CLEO (9 GeV e+e−)

I 5 years CMS (7 TeV pp)

I 5 years Open Data Group −→
I 1+ years Project DIANA-HEP

hyperspectral imagery
automobile traffic
network security
Twitter sentiment
Google n-grams
DNA sequence analysis
credit card fraud detection

and “Big Data” tools

10 / 41

11 / 41

12 / 41

Outline of this talk

Data plumbing: a CMS analysis in Apache Spark

Histogrammar: HEP-like tools in a functional world

Femtocode: the “query system” concept in HEP

13 / 41

Apache Spark

I Like Hadoop in that it implements map-reduce, but these are
just two out of many functionals.

I Not a competitor to Hadoop: can run on a Hadoop cluster.
I Primary interface is a commandline console. Each command

does a distributed job and returns a result, While-U-Wait�.
I User controls in-memory cache on the cluster, effectively

getting an O(TB) working space in RAM.

14 / 41

Apache Spark

I Like Hadoop in that it implements map-reduce, but these are
just two out of many functionals.

I Not a competitor to Hadoop: can run on a Hadoop cluster.

I Primary interface is a commandline console. Each command
does a distributed job and returns a result, While-U-Wait�.

I User controls in-memory cache on the cluster, effectively
getting an O(TB) working space in RAM.

15 / 41

Apache Spark

I Like Hadoop in that it implements map-reduce, but these are
just two out of many functionals.

I Not a competitor to Hadoop: can run on a Hadoop cluster.
I Primary interface is a commandline console. Each command

does a distributed job and returns a result, While-U-Wait�.

I User controls in-memory cache on the cluster, effectively
getting an O(TB) working space in RAM.

16 / 41

Apache Spark

I Like Hadoop in that it implements map-reduce, but these are
just two out of many functionals.

I Not a competitor to Hadoop: can run on a Hadoop cluster.
I Primary interface is a commandline console. Each command

does a distributed job and returns a result, While-U-Wait�.
I User controls in-memory cache on the cluster, effectively

getting an O(TB) working space in RAM.
17 / 41

CMS analysis on Spark

I Oliver Gutsche, Matteo Cremonesi, Cristina Suárez (Fermilab)
wanted to try their CMS dark matter search on Spark.

I This was my first project with DIANA-HEP: I joined to plow
through technical issues before the analysts hit them.

https://cms-big-data.github.io/

18 / 41

https://cms-big-data.github.io/

Problems!

1. Need a Spark cluster.

2. Spark, like most “Big Data” tools, runs on the
Java Virtual Machine (JVM), not C++, and
doesn’t recognize our ROOT data format.

3. HEP analysis tools like histograms don’t have
the right API to fit Spark’s functional interface.

19 / 41

#1. Need a Spark cluster

Several other groups are interested in this and were willing to share
resources in exchange for having us test their system.

I Alexey Svyatkovskiy (Princeton) was active in the group,
helping us use the Princeton BigData cluster.

I Saba Sehrish and Jim Kowalkowski (Fermilab) modified the
analysis for NERSC.

I Maria Girone, Luca Canali, Kacper Surdy (CERN), and
Vaggelis Motesnitsalis (Intel) are now setting up a Data
Reduction Facility at CERN as an OpenLab project.

I Offer from Marco Zanetti and Mauro Morandin at Padua.

20 / 41

#2. Getting data from ROOT files into JVM

A run-down of the attempted solutions. . .

1. Java Native Interface (JNI)
No! This ought to be the right solution, but Java
and ROOT are both large, complex applications
with their own memory management: couldn’t keep
them from interfering (segmentation faults).

ROOT

Spark

Java Virtual Machine

process

2. Python as glue: PyROOT and PySpark in the same process

ROOT

PyROOT PySpark

Python

Spark

Java Virtual Machine
socket

process 1 process 2PySpark is a low-performance
solution: all data must be passed
over a text-based socket and
interpreted by Python.

3. Convert to a Spark-friendly format, like Apache Avro

We used this for a year. Efficient after conversion, but conversion
step is awkward. Avro’s C library is difficult to deploy.

4. Use pure Java code to read ROOT files

What we do now. It’s worth it.

21 / 41

22 / 41

23 / 41

Viktor Khristenko
University of Iowa

24 / 41

Problem #3. Histogram interface

This is how Spark processes data (functional programming):

val final_counter =
dataset.filter(event => event.goodness > 2)

.map(event => do_something(event.muons))

.aggregate(empty_counter)(
(counter, result) => increment(counter, result),
(c1, c2) => combine(c1, c2))

Read as a pipeline from top to bottom:

1. Start with dataset on the cluster somewhere.
2. Filter it with event.goodness > 2.
3. Compute do something on each event’s muons.
4. Accumulate some counter (e.g. histogram or other data summary),

starting with empty counter, using increment to fill with each
event’s result, combining partial results with combine.

all distributed across the cluster, returning only final counter.

25 / 41

Problem #3. Histogram interface

This is how Spark processes data (functional programming):

val final_counter =
dataset.filter(event => event.goodness > 2)

.map(event => do_something(event.muons))

.aggregate(empty_counter)(
(counter, result) => increment(counter, result),
(c1, c2) => combine(c1, c2))

Read as a pipeline from top to bottom:

1. Start with dataset on the cluster somewhere.
2. Filter it with event.goodness > 2.
3. Compute do something on each event’s muons.
4. Accumulate some counter (e.g. histogram or other data summary),

starting with empty counter, using increment to fill with each
event’s result, combining partial results with combine.

all distributed across the cluster, returning only final counter.

26 / 41

Problem #3. Histogram interface

This is how ROOT/PAW/HBOOK histograms expect to be called:

// on a worker handling one partition of data
hist = new TH1F("name", "title", numBins, low, high);

for (i = start_partition; i < end_partition; i++) {
dataset.GetEntry(i);
if (goodness > 2)

hist->Fill(do_something(muons));
}

// on the head node, after downloading partial hists
hadd(hists);

27 / 41

Problem #3. Histogram interface

Trying to wedge the square peg into the round hole:

import ROOT
empty_hist = ROOT.TH1F("n", "t", numBins, low, high)

def increment(hist, result):
hist.Fill(result)
return hist

def combine(h1, h2):
return h1.Add(h2)

filled_hist =
data.filter(lambda event: event.goodness > 2) \

.map(lambda event: do_something(event.muons)) \

.aggregate(empty_hist, increment, combine)

28 / 41

It’s not impossible, but it’s awkward.

Awkward is bad for data analysis because you really should be
focusing on the complexities of your analysis, not your tools.

29 / 41

Making histograms functional

There’s a natural way to do histograms in functional programming:
add a fill rule to the declaration.

hist = Histogram(numBins, low, high,
lambda event: event.what_to_fill)

This way, what to fill doesn’t have to be specified in the
(non-existent) “for” loop.

dataset.fill_it_for_me(hist)

30 / 41

Making histograms functional

There’s a natural way to do histograms in functional programming:
add a fill rule to the declaration.

hist = Histogram(numBins, low, high,
lambda event: event.what_to_fill)

This way, what to fill doesn’t have to be specified in the
(non-existent) “for” loop.

dataset.fill_it_for_me(hist)

31 / 41

It’s cooler this way

Functional programming emphasizes composition: building new
functionality by composing functions.

standard 1-D histogram
Bin(numBins, low, high, x_rule, Count())

I Bin splits into bins by x rule, passes to a Count in each bin,

I Count counts.

32 / 41

It’s cooler this way

Functional programming emphasizes composition: building new
functionality by composing functions.

profile plot
Bin(numBins, low, high, x_rule, Deviate(y_rule))

I Bin splits into bins by x rule, passes to a Deviate in each bin,

I Deviate computes the mean and standard deviation of y rule.

33 / 41

It’s cooler this way

Functional programming emphasizes composition: building new
functionality by composing functions.

2-D histogram
Bin(numBins, low, high, x_rule,

Bin(numBins, low, high, y_rule,
Count()))

I Bin splits into bins by x rule, passes to a Bin in each bin,

I second Bin does the same with y rule.

34 / 41

It’s cooler this way

Functional programming emphasizes composition: building new
functionality by composing functions.

different binning methods on different dimensions
Categorize(event_type,

SparselyBin(trigger_bits,
IrregularlyBin([-2.4, -1.5, 1.5, 2.4], eta,

Bin(100, 0, 100, pt,
Count()))))

I Categorize splits based on string value (like a bar chart)

I SparselyBin only creates bins if their content is non-zero

I IrregularlyBin lets you place bin edges anywhere

35 / 41

It’s cooler this way

Functional programming emphasizes composition: building new
functionality by composing functions.

bundle histograms to be filled together
Bundle(

one = Bin(numBins, low, high, fill_one),
two = Bin(numBins, low, high, fill_two),
three = Bin(numBins, low, high, fill_three))

I Bundle is a directory mapping names to aggregators; same
interface as all the other aggregators

36 / 41

It’s cooler this way

Functional programming emphasizes composition: building new
functionality by composing functions.

to organize your analysis

pack_o_plots = Bundle(
one = Bin(numBins, low, high, fill_one),
two = Bin(numBins, low, high, fill_two))

Bundle(
withcut = Select(cut_rule, pack_o_plots),
nocut = pack_o_plots)

I Select only passes down events that pass cut rule

I Bundles are now nested like subdirectories, one pack o plots
with cut, the other without

37 / 41

It’s cooler this way

Functional programming emphasizes composition: building new
functionality by composing functions.

or do wacky things
Bin(numBins, low, high, lambda event: event.x,

Bundle(
nonzero = Fraction(lambda event: event.y > 0,

Count()),
mean = Average(lambda event: event.y),
maximum = Maximize(lambda event: event.y)))

I fills a directory of “nonzero,” “mean,” and “maximum” in each bin.

38 / 41

http://histogrammar.org

39 / 41

http://histogrammar.org

40 / 41

Wrap-up

I We’re not the big fish anymore: time to look to
industry to see how they’re solving problems
similar to ours.

I Historical mismatches in non-essential details
(e.g. data formats) are annoying, but
surmountable.

I Differences in fundamental approach are an
opportunity: alien civilizations can learn from
each other.

41 / 41

